Sprak2.0 Streaming消费Kafka数据实时计算及运算结果保存数据库代码示例

package com.gm.hive.SparkHive;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.Optional;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies; import scala.Tuple2; public class App { public static void main(String[] args) {
// TODO Auto-generated method stub
SparkConf conf = new SparkConf().setMaster("local[2]").setAppName(
"streamingTest"); JavaSparkContext sc = new JavaSparkContext(conf);
sc.setLogLevel("ERROR");
sc.setCheckpointDir("./checkpoint"); JavaStreamingContext ssc = new JavaStreamingContext(sc,
Durations.seconds(10)); // kafka相关参数,必要!缺了会报错
Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "192.168.174.200:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "newgroup2");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false); Collection<String> topics = Arrays.asList("test"); JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils
.createDirectStream(ssc, LocationStrategies.PreferConsistent(),
ConsumerStrategies.<String, String> Subscribe(topics,
kafkaParams)); // 注意这边的stream里的参数本身是个ConsumerRecord对象
JavaPairDStream<String, Integer> counts = stream
.flatMap(
x -> Arrays.asList(x.value().toString().split(" "))
.iterator())
.mapToPair(x -> new Tuple2<String, Integer>(x, 1))
.reduceByKey((x, y) -> x + y);
//counts.print(); JavaPairDStream<String, Integer> result = counts
.updateStateByKey(new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() { private static final long serialVersionUID = 1L; @Override
public Optional<Integer> call(List<Integer> values,
Optional<Integer> state) throws Exception {
/**
* values:经过分组最后 这个key所对应的value,如:[1,1,1,1,1]
* state:这个key在本次之前之前的状态
*/
Integer updateValue = 0;
if (state.isPresent()) {
updateValue = state.get();
} for (Integer value : values) {
updateValue += value;
}
return Optional.of(updateValue);
}
}); //数据库内容
String url = "jdbc:postgresql://192.168.174.200:5432/postgres?charSet=utf-8";
Properties connectionProperties = new Properties();
connectionProperties.put("user","postgres");
connectionProperties.put("password","postgres");
connectionProperties.put("driver","org.postgresql.Driver"); result.print(); result.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>(){
public void call(JavaPairRDD<String, Integer> rdd)
throws Exception {
// TODO Auto-generated method stub
JavaRDD<ResultRow> rowRDD = rdd.map(new Function<Tuple2<String, Integer>,ResultRow>(){ public ResultRow call(Tuple2<String, Integer> arg0)
throws Exception {
// TODO Auto-generated method stub
ResultRow rr = new ResultRow();
rr.setTypeid(arg0._1);
rr.setKczs(arg0._2);
return rr;
} });
SparkSession spark = SparkSession.builder().config(rdd.context().getConf()).getOrCreate();
Dataset<Row> data = spark.createDataFrame(rowRDD, ResultRow.class);
//将数据通过覆盖的形式保存在数据表中
data.write().mode(SaveMode.Overwrite).jdbc(url, "kcssqktj", connectionProperties);
}
}); ssc.start();
try {
ssc.awaitTermination();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
ssc.close();
} }
package com.gm.hive.SparkHive;

import java.io.Serializable;

public class ResultRow implements Serializable {
private static final long serialVersionUID = 6681372116317508248L;
String typeid;
int kczs; public String getTypeid() {
return typeid;
} public void setTypeid(String typeid) {
this.typeid = typeid;
} public int getKczs() {
return kczs;
} public void setKczs(int kczs) {
this.kczs = kczs;
} }
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.test</groupId>
<artifactId>kcssqktj_spark</artifactId>
<version>0.0.1-SNAPSHOT</version>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties> <dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.22</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.8.0</version>
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.0.0</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.0.0</version>
<exclusions>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.0</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>2.1.1</version>
</dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.1.1</version>
</dependency> <dependency>
<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>9.4-1201-jdbc4</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.0.0</version>
</dependency>
</dependencies>
<build> <plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>allinone</shadedClassifierName>
<artifactSet>
<includes>
<include>*:*</include>
</includes>
</artifactSet>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>reference.conf</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.handlers</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.schemas</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<manifestEntries>
<Main-Class></Main-Class>
</manifestEntries>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
上一篇:Day9 面向对象高级


下一篇:一文让你彻底了解大数据实时计算引擎 Flink