单个服务器层
|
联合服务器层
|
生产服务器上有一个 SQL Server 实例。
|
每个成员服务器上都有一个 SQL Server 实例。
|
生产数据存储在一个数据库中。
|
每个成员服务器都有一个成员数据库。数据分布在成员数据库之间。
|
一般每个表都是单个实体。
|
原始数据库中的表被水平分区为成员表。一个成员数据库有一个成员表,而且使用分布式分区视图使每个成员服务器上看起来似乎都有原始表的完整复本。
|
与单个服务器的所有连接和所有 SQL 语句都由 SQL Server 的同一个实例处理。
|
应用程序层必须能够在包含语句所引用的大部分数据的成员服务器上配置 SQL 语句。
|
IN 操作符
用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格。
但是用IN的SQL性能总是比较低的,从ORACLE执行的步骤来分析用IN的SQL与不用IN的SQL有以下区别:
ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。由此可见用IN的SQL至少多了一个转换的过程。一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL就不能转换了。
推荐方案:在业务密集的SQL当中尽量不采用IN操作符。
NOT IN操作符
此操作是强列推荐不使用的,因为它不能应用表的索引。
推荐方案:用NOT EXISTS 或(外连接+判断为空)方案代替
<> 操作符(不等于)
不等于操作符是永远不会用到索引的,因此对它的处理只会产生全表扫描。
推荐方案:用其它相同功能的操作运算代替,如
a<>0 改为 a>0 or a<0
a<>’’ 改为 a>’’
IS NULL 或IS NOT NULL操作(判断字段是否为空)
判断字段是否为空一般是不会应用索引的,因为B树索引是不索引空值的。
推荐方案:
用其它相同功能的操作运算代替,如
a is not null 改为 a>0 或a>’’等。
不允许字段为空,而用一个缺省值代替空值,如业扩申请中状态字段不允许为空,缺省为申请。
建立位图索引(有分区的表不能建,位图索引比较难控制,如字段值太多索引会使性能下降,多人更新操作会增加数据块锁的现象)
> 及 < 操作符(大于或小于操作符)
大于或小于操作符一般情况下是不用调整的,因为它有索引就会采用索引查找,但有的情况下可以对它进行优化,如一个表有100万记录,一个数值型字段A,30万记录的A=0,30万记录的A=1,39万记录的A=2,1万记录的A=3。那么执行A>2与A>=3的效果就有很大的区别了,因为A>2时ORACLE会先找出为2的记录索引再进行比较,而A>=3时ORACLE则直接找到=3的记录索引。
LIKE操作符
LIKE操作符可以应用通配符查询,里面的通配符组合可能达到几乎是任意的查询,但是如果用得不好则会产生性能上的问题,如LIKE ‘%5400%’ 这种查询不会引用索引,而LIKE ‘X5400%’则会引用范围索引。一个实际例子:用YW_YHJBQK表中营业编号后面的户标识号可来查询营业编号 YY_BH LIKE ‘%5400%’ 这个条件会产生全表扫描,如果改成YY_BH LIKE ’X5400%’ OR YY_BH LIKE ’B5400%’ 则会利用YY_BH的索引进行两个范围的查询,性能肯定大大提高。
UNION操作符
UNION在进行表链接后会筛选掉重复的记录,所以在表链接后会对所产生的结果集进行排序运算,删除重复的记录再返回结果。实际大部分应用中是不会产生重复的记录,最常见的是过程表与历史表UNION。如:
select * from gc_dfys
union
select * from ls_jg_dfys
这个SQL在运行时先取出两个表的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。
推荐方案:采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。
select * from gc_dfys
union all
select * from ls_jg_dfys
SQL书写的影响
同一功能同一性能不同写法SQL的影响
如一个SQL在A程序员写的为
Select * from zl_yhjbqk
B程序员写的为
Select * from dlyx.zl_yhjbqk(带表所有者的前缀)
C程序员写的为
Select * from DLYX.ZLYHJBQK(大写表名)
D程序员写的为
Select * from DLYX.ZLYHJBQK(中间多了空格)
以上四个SQL在ORACLE分析整理之后产生的结果及执行的时间是一样的,但是从ORACLE共享内存SGA的原理,可以得出ORACLE对每个SQL 都会对其进行一次分析,并且占用共享内存,如果将SQL的字符串及格式写得完全相同则ORACLE只会分析一次,共享内存也只会留下一次的分析结果,这不仅可以减少分析SQL的时间,而且可以减少共享内存重复的信息,ORACLE也可以准确统计SQL的执行频率。
WHERE后面的条件顺序影响
WHERE子句后面的条件顺序对大数据量表的查询会产生直接的影响,如
Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1
Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下'
以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个字段都没进行索引,所以执行的时候都是全表扫描,第一条SQL的dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,而在进行第二条SQL的时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。
查询表顺序的影响
在FROM后面的表中的列表顺序会对SQL执行性能影响,在没有索引及ORACLE没有对表进行统计分析的情况下ORACLE会按表出现的顺序进行链接,由此因为表的顺序不对会产生十分耗服务器资源的数据交叉。(注:如果对表进行了统计分析,ORACLE会自动先进小表的链接,再进行大表的链接)
SQL语句索引的利用
对操作符的优化(见上节)
对条件字段的一些优化
采用函数处理的字段不能利用索引,如:
substr(hbs_bh,1,4)=’5400’,优化处理:hbs_bh like ‘5400%’
trunc(sk_rq)=trunc(sysdate),优化处理:
sk_rq>=trunc(sysdate) and sk_rq<trunc(sysdate+1)
进行了显式或隐式的运算的字段不能进行索引,如:
ss_df+20>50,优化处理:ss_df>30
‘X’||hbs_bh>’X5400021452’,优化处理:hbs_bh>’5400021542’
sk_rq+5=sysdate,优化处理:sk_rq=sysdate-5
hbs_bh=5401002554,优化处理:hbs_bh=’ 5401002554’,注:此条件对hbs_bh 进行隐式的to_number转换,因为hbs_bh字段是字符型。
条件内包括了多个本表的字段运算时不能进行索引,如:
ys_df>cx_df,无法进行优化
qc_bh||kh_bh=’5400250000’,优化处理:qc_bh=’5400’ and kh_bh=’250000’
应用ORACLE的HINT(提示)处理
提示处理是在ORACLE产生的SQL分析执行路径不满意的情况下要用到的。它可以对SQL进行以下方面的提示
目标方面的提示:
COST(按成本优化)
RULE(按规则优化)
CHOOSE(缺省)(ORACLE自动选择成本或规则进行优化)
ALL_ROWS(所有的行尽快返回)
FIRST_ROWS(第一行数据尽快返回)
执行方法的提示:
USE_NL(使用NESTED LOOPS方式联合)
USE_MERGE(使用MERGE JOIN方式联合)
USE_HASH(使用HASH JOIN方式联合)
索引提示:
INDEX(TABLE INDEX)(使用提示的表索引进行查询)
其它高级提示(如并行处理等等)
ORACLE的提示功能是比较强的功能,也是比较复杂的应用,并且提示只是给ORACLE执行的一个建议,有时如果出于成本方面的考虑ORACLE也可能不会按提示进行。根据实践应用,一般不建议开发人员应用ORACLE提示,因为各个数据库及服务器性能情况不一样,很可能一个地方性能提升了,但另一个地方却下降了,ORACLE在SQL执行分析方面已经比较成熟,如果分析执行的路径不对首先应在数据库结构(主要是索引)、服务器当前性能(共享内存、磁盘文件碎片)、数据库对象(表、索引)统计信息是否正确这几方面分析。
1 不要忘记给数据库做索引。
合理的索引能立即显著地提高数据库整个系统的性能。可以参考有关SQL性能调试书籍,学会根据所需查询方式合理制作索引和根据索引方式改进查询语句。
2 在适当的情况下,尽可能的用存储过程而不是SQL查询。
因为前者已经过了预编译,运行速度更快。同时让数据库仅仅返回你所需要的那些数据,而不是返回大量数据再让ASP程序过滤。总之要充分和有效地发挥数据库的强大功能,让它按照我们的要求反馈给我们最合适和最精练的信息。
3 在可能情况下我们应该使用SQL Server而不是Access。因为Access仅仅是基于文件的数据库,多用户性能很差。数据库连接尽量使用OLEDB和非DSN方式,因为这种连接方式有更好的并发性能。
4 避免使用DAO(Data Access Objects)和RDO(Remote Data Objects)数据源。因为他们主要应用在单用户的处理系统里,ADO(ActiveX Data Objects)才是为Web应用设计的。
5 建立记录集Rescordset的时候要清晰合理地设置数据游标(cursort)和锁定方式(locktype)。
因为在不同的方式下ASP会以不同的方式操纵数据库,其执行速度也有很大区别,尤其在大数据量的时候。如果你只想遍历数据,那么默认游标(前进、只读)会带来最好的性能。
6 当你引用ADO变量的时候,会消耗较多的CPU周期。因此,如果在一个ASP页面中多次引用数据库的字段变量,一个较好的方式是将字段值先放入本地变量,然后可以直接调用本地变量来计算和显示数据。
7 缓存ADO Connection对象也许不是一个好主意。
如果一个连接(Connection)对象被存储在Application对象中而被所有ASP页面使用,那么所有页面就会争着使用这个连接。但是如果连接对象被存储在Session对象中,就要为每个用户创建一个数据库连接,这就减小了连接池的作用,并且增大了Web服务器和数据库服务器的压力。可以用在每个使用ADO的ASP页创建和释放ADO对象来替代缓存数据库连接。因为IIS内建了数据库连接池,所以这种方法非常有效,缺点是每个ASP页面都需要进行一些创建和释放操作。
8 ASP最强大和主要的用途之一就是对数据库进行操作,在数据库操作中我们要注意:不要任意使用“SELECT * ......” 形式的SQL查询语句。应该尽量检索你所需要的那些字段。比如一个表中有10个字段,但是你只会用到其中的一个字段(name),就该使用“select name from mytable”,而不是用“select * from mytable”。在字段数比较少的时候,两者的区别可能并不明显,但是当一个表中拥有几十个字段的时候,数据库会多检索很多你并不需要的数据。在这种情况下你最好不要为了节省打字时间或者害怕查找对应字段名称的麻烦,而要老老实实地使用“select id,name,age... from mytable”。
9 及时关闭打开的记录集对象以及连接(Connection)对象。
记录集对象和连接对象耗费系统资源相当大,因此它们的可用数量是有限的。如果你打开了太多的记录集对象以及连接对象而最后却没有关闭它们,可能会出现ASP程序刚开始的时候运行速度很快,而多运行几遍就越来越慢的现象,甚至导致服务器死机。请使用如下方法进行关闭:
MyRecordSet.closeSet MyRecordSet=Nothing
Set MyConnection=Nothing
10 连接数据库
仍然使用ODBC系统或者文件DSN来连接数据库,或者使用很快的OLEDB技术来连接。使用后者,当移动Web文件时,不再需要修改配置。
OLEDB位于应用程序与ODBC层之间。在ASP页面中,ADO就是位于OLEDB之上的程序。调用ADO时,首先发送给OLEDB,然后再发送给ODBC层。可以直接连接到OLEDB层,这么做后,将提高服务器端的性能。怎么直接连接到OLEDB呢?
如果使用SQLServer 7,使用下面的代码做为连接字符串:
strConnString = "DSN='';DRIVER={SQL SERVER};" & _
"UID=myuid;PWD=mypwd;" & _
"DATABASE=MyDb;SERVER=MyServer;"
最重要的参数就是“DRIVER=”部分。如果你想绕过ODBC而使用OLEDB来访问SQL Server,使用下面的语法:
strConnString ="Provider=SQLOLEDB.1;Password=mypassword;" & _
"Persist Security Info=True;User ID=myuid;" & _
"Initial Catalog=mydbname;" & _
"Data Source=myserver;Connect Timeout=15"
为什么这很重要
现在你可能奇怪为什么学习这种新的连接方法很关键?为什么不使用标准的DSN或者系统DSN方法?好,根据Wrox在他们的ADO 2.0程序员参考书籍中所做的测试,如果使用OLEDB连接,要比使用DSN或者DSN-less连接,有以下的性能提高表现:
性能比较:
----------------------------------------------------------------------
SQL Access
连接时间: 18 82
重复1,000个记录的时间:2900 5400
OLEDB DSN OLEDB DSN
连接时间:62 99
重复1,000个记录的时间:100 950
----------------------------------------------------------------------
这个结论在Wrox的ADO 2.0程序员参考发表。时间是以毫秒为单位,重复1,000个记录的时间是以服务器油标的方式计算的。
from tableA a,
(
select b.fieldD, sum(c.total_amount) amount
from tableA b, tableB c
where b.fieldC = 100 and
b.fieldA in ('AA', 'BB', 'CC', 'DD', 'EE', 'FF') and
b.fieldId = c.fieldId
group by b.fieldD
) m
where a.fieldC = 100 and a.fieldD = m.fieldD and
a.fieldA = 'GG'
这句sql当中对同一个表扫描了两次,所以效率太低,有什么办法可以避免这种写法?
tableA,tableB 是主从表关系。
请不要用sql server 中太特殊的语法,因为要用到oracle中。
在oracle中无人回答。
------------------------------------------
SQL语句的写法是根据你的业务要求,改写起来效果不能很明显。
先分析一下你的SQL的执行路径:
1、
首先会分别对tableA和tableB应用filter动作(使用m子查询中的where条件)。然后进行连接,可能会是nestloop或hash join...这取决于你
的两个表数据过滤情况。然后进行汇总(group by)输出m结果集。
2、接下来会将m结果集与tableA(外层)过滤后(a.fieldC = 100 and a.fieldA = 'GG')的结果集进行连接,还是有多种连接方式。最后输
出a. *, m.amount
大致分析了一下执行的路径,就会对你的描述产生疑惑:“对同一个表扫描了两次”肯定指的是tableA了。但是你没有建立相关的索引吗?如
果说外层的查询就算建立索引也会通过rowid定位到表中,我们权当这是“表扫描”,但是内层的查询应该不会发生产生表扫描(all table
access)的情况!应该是索引扫描(index scan)才对。根据这一点,我们可以首先考虑建立索引来提高效率。
可以考虑建立的索引:
create index idx_1 on tableA(fieldC,fieldA,fieldId,fieldD)
create index idx_2 on tableB(fieldId,total_amount)
建立完这两个索引后别忘了重新执行分析,以保证统计值准确。
建立完这两个索引后,内层的执行计划应该是对idx_1和idx_2进行索引扫描(index scan)然后连接输出m结果集,再与外层的经过索引扫描(
index scan + rowid to table)的结果集进行连接。
如果查询计划不对,请检查你的优化器参数设置,不要使用rbo要使用cbo。如果还是没有采用请用/* index*/提示强制指定....
上面的是单纯从索引方面考虑。如果还是不能提高速度,考虑建立实体化视图(物化视图)。可以只将m部分进行实体化。如果tableA和tableB
基本属于静态表,可以考虑将整条语句实体化。
CREATEtable [dbo].[TGongwen] ( --TGongwen是红头文件表名
[Gid] [int] ideNTITY (1, 1) NOT NULL ,
--本表的id号,也是主键
[title] [varchar] (80) COLLATE Chinese_PRC_CI_AS NULL ,
--红头文件的标题
[fariqi] [datetime] NULL ,
--发布日期
[neibuYonghu] [varchar] (70) COLLATE Chinese_PRC_CI_AS NULL ,
--发布用户
[reader] [varchar] (900) COLLATE Chinese_PRC_CI_AS NULL ,
--需要浏览的用户。每个用户中间用分隔符“,”分开
) ON [PRIMARY] TEXTimage_ON [PRIMARY]
GO
下面,我们来往数据库中添加1000万条数据:
declare @i int
set @i=1
while @i<=250000
begin
insert into Tgongwen(fariqi,neibuyonghu,reader,title) values('2004-2-5','通信科','通信科,办公室,王局长,刘局长,张局长,admin,刑侦支队,特勤支队,交巡警支队,经侦支队,户政科,治安支队,外事科','这是最先的25万条记录')
set @i=@i+1
end
GO
declare @i int
set @i=1
while @i<=250000
begin
insert into Tgongwen(fariqi,neibuyonghu,reader,title) values('2004-9-16','办公室','办公室,通信科,王局长,刘局长,张局长,admin,刑侦支队,特勤支队,交巡警支队,经侦支队,户政科,外事科','这是中间的25万条记录')
set @i=@i+1
end
GO
declare @h int
set @h=1
while @h<=100
begin
declare @i int
set @i=2002
while @i<=2003
begin
declare @j int
set @j=0
while @j<50
begin
declare @k int
set @k=0
while @k<50
begin
insert into Tgongwen(fariqi,neibuyonghu,reader,title) values(cast(@i as varchar(4))+'-8-15 3:'+cast(@j as varchar(2))+':'+cast(@j as varchar(2)),'通信科','办公室,通信科,王局长,刘局长,张局长,admin,刑侦支队,特勤支队,交巡警支队,经侦支队,户政科,外事科','这是最后的50万条记录')
set @k=@k+1
end
set @j=@j+1
end
set @i=@i+1
end
set @h=@h+1
end
GO
declare @i int
set @i=1
while @i<=9000000
begin
insert into Tgongwen(fariqi,neibuyonghu,reader,title) values('2004-5-5','通信科','通信科,办公室,王局长,刘局长,张局长,admin,刑侦支队,特勤支队,交巡警支队,经侦支队,户政科,治安支队,外事科','这是最后添加的900万条记录')
set @i=@i+1000000
end
GO
通过以上语句,我们创建了25万条由于2004年2月5日发布的记录,25万条由办公室于2004年9月6日发布的记录,2002年和2003年各100个2500条相同日期、不同分秒的记录(共50万条),还有由通信科于2004年5月5日发布的900万条记录,合计1000万条。
建立“适当”的索引是实现查询优化的首要前提。
索引(index)是除表之外另一重要的、用户定义的存储在物理介质上的数据结构。当根据索引码的值搜索数据时,索引提供了对数据的快速访问。事实上,没有索引,数据库也能根据select语句成功地检索到结果,但随着表变得越来越大,使用“适当”的索引的效果就越来越明显。注意,在这句话中,我们用了“适当”这个词,这是因为,如果使用索引时不认真考虑其实现过程,索引既可以提高也会破坏数据库的工作性能。
(一)深入浅出理解索引结构
实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别:
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。
进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。
(二)何时使用聚集索引或非聚集索引
下面的表总结了何时使用聚集索引或非聚集索引(很重要)。
动作描述
使用聚集索引
使用非聚集索引
列经常被分组排序
应
应
返回某范围内的数据
应
不应
一个或极少不同值
不应
不应
小数目的不同值
应
不应
大数目的不同值
不应
应
频繁更新的列
不应
应
外键列
应
应
主键列
应
应
频繁修改索引列
不应
应
事实上,我们可以通过前面聚集索引和非聚集索引的定义的例子来理解上表。如:返回某范围内的数据一项。比如您的某个表有一个时间列,恰好您把聚合索引建立在了该列,这时您查询2004年1月1日至2004年10月1日之间的全部数据时,这个速度就将是很快的,因为您的这本字典正文是按日期进行排序的,聚类索引只需要找到要检索的所有数据中的开头和结尾数据即可;而不像非聚集索引,必须先查到目录中查到每一项数据对应的页码,然后再根据页码查到具体内容。
(三)结合实际,谈索引使用的误区
理论的目的是应用。虽然我们刚才列出了何时应使用聚集索引或非聚集索引,但在实践中以上规则却很容易被忽视或不能根据实际情况进行综合分析。下面我们将根据在实践中遇到的实际问题来谈一下索引使用的误区,以便于大家掌握索引建立的方法。
1、主键就是聚集索引
这种想法笔者认为是极端错误的,是对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。
通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。我们的这个办公自动化的实例中的列Gid就是如此。此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。
显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。
从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。
在办公自动化系统中,无论是系统首页显示的需要用户签收的文件、会议还是用户进行文件查询等任何情况下进行数据查询都离不开字段的是“日期”还有用户本身的“用户名”。
通常,办公自动化的首页会显示每个用户尚未签收的文件或会议。虽然我们的where语句可以仅仅限制当前用户尚未签收的情况,但如果您的系统已建立了很长时间,并且数据量很大,那么,每次每个用户打开首页的时候都进行一次全表扫描,这样做意义是不大的,绝大多数的用户1个月前的文件都已经浏览过了,这样做只能徒增数据库的开销而已。事实上,我们完全可以让用户打开系统首页时,数据库仅仅查询这个用户近3个月来未阅览的文件,通过“日期”这个字段来限制表扫描,提高查询速度。如果您的办公自动化系统已经建立的2年,那么您的首页显示速度理论上将是原来速度8倍,甚至更快。
在这里之所以提到“理论上”三字,是因为如果您的聚集索引还是盲目地建在ID这个主键上时,您的查询速度是没有这么高的,即使您在“日期”这个字段上建立的索引(非聚合索引)。下面我们就来看一下在1000万条数据量的情况下各种查询的速度表现(3个月内的数据为25万条):
(1)仅在主键上建立聚集索引,并且不划分时间段:
Select gid,fariqi,neibuyonghu,title from tgongwen
用时:128470毫秒(即:128秒)
(2)在主键上建立聚集索引,在fariq上建立非聚集索引:
select gid,fariqi,neibuyonghu,title from Tgongwen
where fariqi> dateadd(day,-90,getdate())
用时:53763毫秒(54秒)
(3)将聚合索引建立在日期列(fariqi)上:
select gid,fariqi,neibuyonghu,title from Tgongwen
where fariqi> dateadd(day,-90,getdate())
用时:2423毫秒(2秒)
虽然每条语句提取出来的都是25万条数据,各种情况的差异却是巨大的,特别是将聚集索引建立在日期列时的差异。事实上,如果您的数据库真的有1000万容量的话,把主键建立在ID列上,就像以上的第1、2种情况,在网页上的表现就是超时,根本就无法显示。这也是我摒弃ID列作为聚集索引的一个最重要的因素。
得出以上速度的方法是:在各个select语句前加:declare @d datetime
set @d=getdate()
并在select语句后加:
select [语句执行花费时间(毫秒)]=datediff(ms,@d,getdate())
2、只要建立索引就能显著提高查询速度
事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。所以,并非是在任何字段上简单地建立索引就能提高查询速度。
从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。在此字段上建立聚合索引是再合适不过了。在现实中,我们每天都会发几个文件,这几个文件的发文日期就相同,这完全符合建立聚集索引要求的:“既不能绝大多数都相同,又不能只有极少数相同”的规则。由此看来,我们建立“适当”的聚合索引对于我们提高查询速度是非常重要的。
3、把所有需要提高查询速度的字段都加进聚集索引,以提高查询速度
上面已经谈到:在进行数据查询时都离不开字段的是“日期”还有用户本身的“用户名”。既然这两个字段都是如此的重要,我们可以把他们合并起来,建立一个复合索引(compound index)。
很多人认为只要把任何字段加进聚集索引,就能提高查询速度,也有人感到迷惑:如果把复合的聚集索引字段分开查询,那么查询速度会减慢吗?带着这个问题,我们来看一下以下的查询速度(结果集都是25万条数据):(日期列fariqi首先排在复合聚集索引的起始列,用户名neibuyonghu排在后列)
(1)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5'
查询速度:2513毫秒
(2)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>'2004-5-5' and neibuyonghu='办公室'
查询速度:2516毫秒
(3)select gid,fariqi,neibuyonghu,title from Tgongwen where neibuyonghu='办公室'
查询速度:60280毫秒
从以上试验中,我们可以看到如果仅用聚集索引的起始列作为查询条件和同时用到复合聚集索引的全部列的查询速度是几乎一样的,甚至比用上全部的复合索引列还要略快(在查询结果集数目一样的情况下);而如果仅用复合聚集索引的非起始列作为查询条件的话,这个索引是不起任何作用的。当然,语句1、2的查询速度一样是因为查询的条目数一样,如果复合索引的所有列都用上,而且查询结果少的话,这样就会形成“索引覆盖”,因而性能可以达到最优。同时,请记住:无论您是否经常使用聚合索引的其他列,但其前导列一定要是使用最频繁的列。
(四)其他书上没有的索引使用经验总结
1、用聚合索引比用不是聚合索引的主键速度快
下面是实例语句:(都是提取25万条数据)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
使用时间:3326毫秒
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid<=250000
使用时间:4470毫秒
这里,用聚合索引比用不是聚合索引的主键速度快了近1/4。
2、用聚合索引比用一般的主键作order by时速度快,特别是在小数据量情况下
select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by fariqi
用时:12936
select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by gid
用时:18843
这里,用聚合索引比用一般的主键作order by时,速度快了3/10。事实上,如果数据量很小的话,用聚集索引作为排序列要比使用非聚集索引速度快得明显的多;而数据量如果很大的话,如10万以上,则二者的速度差别不明显。
3、使用聚合索引内的时间段,搜索时间会按数据占整个数据表的百分比成比例减少,而无论聚合索引使用了多少个
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1'
用时:6343毫秒(提取100万条)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-6-6'
用时:3170毫秒(提取50万条)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
用时:3326毫秒(和上句的结果一模一样。如果采集的数量一样,那么用大于号和等于号是一样的)
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1' and fariqi<'2004-6-6'
用时:3280毫秒
下面的例子中,共有100万条数据,2004年1月1日以后的数据有50万条,但只有两个不同的日期,日期精确到日;之前有数据50万条,有5000个不同的日期,日期精确到秒。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>'2004-1-1' order by fariqi
用时:6390毫秒
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi<'2004-1-1' order by fariqi
用时:6453毫秒
(五)其他注意事项
“水可载舟,亦可覆舟”,索引也一样。索引有助于提高检索性能,但过多或不当的索引也会导致系统低效。因为用户在表中每加进一个索引,数据库就要做更多的工作。过多的索引甚至会导致索引碎片。
所以说,我们要建立一个“适当”的索引体系,特别是对聚合索引的创建,更应精益求精,以使您的数据库能得到高性能的发挥。
当然,在实践中,作为一个尽职的数据库管理员,您还要多测试一些方案,找出哪种方案效率最高、最为有效。
二、改善SQL语句
很多人不知道SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的SQL语句会被SQL SERVER误解。比如:
select * from table1 where name='zhangsan' and tID > 10000
和执行:
select * from table1 where tID > 10000 and name='zhangsan'
一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那么后一句仅仅从表的10000条以后的记录中查找就行了;而前一句则要先从全表中查找看有几个name='zhangsan'的,而后再根据限制条件条件tID>10000来提出查询结果。
事实上,这样的担心是不必要的。SQL SERVER中有一个“查询分析优化器”,它可以计算出where子句中的搜索条件并确定哪个索引能缩小表扫描的搜索空间,也就是说,它能实现自动优化。
虽然查询优化器可以根据where子句自动的进行查询优化,但大家仍然有必要了解一下“查询优化器”的工作原理,如非这样,有时查询优化器就会不按照您的本意进行快速查询。
在查询分析阶段,查询优化器查看查询的每个阶段并决定限制需要扫描的数据量是否有用。如果一个阶段可以被用作一个扫描参数(SARG),那么就称之为可优化的,并且可以利用索引快速获得所需数据。
SARG的定义:用于限制搜索的一个操作,因为它通常是指一个特定的匹配,一个值得范围内的匹配或者两个以上条件的AND连接。形式如下:
列名操作符 <常数或变量>
或
<常数或变量> 操作符列名
列名可以出现在操作符的一边,而常数或变量出现在操作符的另一边。如:
Name=’张三’
价格>5000
5000<价格
Name=’张三’ and 价格>5000
如果一个表达式不能满足SARG的形式,那它就无法限制搜索的范围了,也就是SQL SERVER必须对每一行都判断它是否满足WHERE子句中的所有条件。所以一个索引对于不满足SARG形式的表达式来说是无用的。
介绍完SARG后,我们来总结一下使用SARG以及在实践中遇到的和某些资料上结论不同的经验:
1、Like语句是否属于SARG取决于所使用的通配符的类型
如:name like ‘张%’ ,这就属于SARG
而:name like ‘%张’ ,就不属于SARG。
原因是通配符%在字符串的开通使得索引无法使用。
2、or 会引起全表扫描
Name=’张三’ and 价格>5000 符号SARG,而:Name=’张三’ or 价格>5000 则不符合SARG。使用or会引起全表扫描。
3、非操作符、函数引起的不满足SARG形式的语句
不满足SARG形式的语句最典型的情况就是包括非操作符的语句,如:NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等,另外还有函数。下面就是几个不满足SARG形式的例子:
ABS(价格)<5000
Name like ‘%三’
有些表达式,如:
WHERE 价格*2>5000
SQL SERVER也会认为是SARG,SQL SERVER会将此式转化为:
WHERE 价格>2500/2
但我们不推荐这样使用,因为有时SQL SERVER不能保证这种转化与原始表达式是完全等价的。
4、IN 的作用相当与OR
语句:
Select * from table1 where tid in (2,3)
和
Select * from table1 where tid=2 or tid=3
是一样的,都会引起全表扫描,如果tid上有索引,其索引也会失效。
5、尽量少用NOT
6、exists 和 in 的执行效率是一样的
很多资料上都显示说,exists要比in的执行效率要高,同时应尽可能的用not exists来代替not in。但事实上,我试验了一下,发现二者无论是前面带不带not,二者之间的执行效率都是一样的。因为涉及子查询,我们试验这次用SQL SERVER自带的pubs数据库。运行前我们可以把SQL SERVER的statistics I/O状态打开。
(1)selecttitle,price from titles where title_id in (select title_id from sales where qty>30)
该句的执行结果为:
表 'sales'。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
表 'titles'。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
(2)select title,price from titles where exists (select * from sales where sales.title_id=titles.title_id and qty>30)
第二句的执行结果为:
表 'sales'。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
表 'titles'。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
我们从此可以看到用exists和用in的执行效率是一样的。
7、用函数charindex()和前面加通配符%的LIKE执行效率一样
前面,我们谈到,如果在LIKE前面加上通配符%,那么将会引起全表扫描,所以其执行效率是低下的。但有的资料介绍说,用函数charindex()来代替LIKE速度会有大的提升,经我试验,发现这种说明也是错误的:
select gid,title,fariqi,reader from tgongwen where charindex('刑侦支队',reader)>0 and fariqi>'2004-5-5'
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
select gid,title,fariqi,reader from tgongwen where reader like '%' + '刑侦支队' + '%' and fariqi>'2004-5-5'
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
8、union并不绝对比or的执行效率高
我们前面已经谈到了在where子句中使用or会引起全表扫描,一般的,我所见过的资料都是推荐这里用union来代替or。事实证明,这种说法对于大部分都是适用的。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16' or gid>9990000
用时:68秒。扫描计数 1,逻辑读 404008 次,物理读 283 次,预读 392163 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000
用时:9秒。扫描计数 8,逻辑读 67489 次,物理读 216 次,预读 7499 次。
看来,用union在通常情况下比用or的效率要高的多。
但经过试验,笔者发现如果or两边的查询列是一样的话,那么用union则反倒和用or的执行速度差很多,虽然这里union扫描的是索引,而or扫描的是全表。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16' or fariqi='2004-2-5'
用时:6423毫秒。扫描计数 2,逻辑读 14726 次,物理读 1 次,预读 7176 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-9-16'
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi='2004-2-5'
用时:11640毫秒。扫描计数 8,逻辑读 14806 次,物理读 108 次,预读 1144 次。
9、字段提取要按照“需多少、提多少”的原则,避免“select *”
我们来做一个试验:
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4673毫秒
select top 10000 gid,fariqi,title from tgongwen order by gid desc
用时:1376毫秒
select top 10000 gid,fariqi from tgongwen order by gid desc
用时:80毫秒
由此看来,我们每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
10、count(*)不比count(字段)慢
某些资料上说:用*会统计所有列,显然要比一个世界的列名效率低。这种说法其实是没有根据的。我们来看:
select count(*) from Tgongwen
用时:1500毫秒
select count(gid) from Tgongwen
用时:1483毫秒
select count(fariqi) from Tgongwen
用时:3140毫秒
select count(title) from Tgongwen
用时:52050毫秒
从以上可以看出,如果用count(*)和用count(主键)的速度是相当的,而count(*)却比其他任何除主键以外的字段汇总速度要快,而且字段越长,汇总的速度就越慢。我想,如果用count(*), SQL SERVER可能会自动查找最小字段来汇总的。当然,如果您直接写count(主键)将会来的更直接些。
11、order by按聚集索引列排序效率最高
我们来看:(gid是主键,fariqi是聚合索引列)
select top 10000 gid,fariqi,reader,title from tgongwen
用时:196 毫秒。扫描计数 1,逻辑读 289 次,物理读 1 次,预读 1527 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc
用时:4720毫秒。扫描计数 1,逻辑读 41956 次,物理读 0 次,预读 1287 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4736毫秒。扫描计数 1,逻辑读 55350 次,物理读 10 次,预读 775 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc
用时:173毫秒。扫描计数 1,逻辑读 290 次,物理读 0 次,预读 0 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc
用时:156毫秒。扫描计数 1,逻辑读 289 次,物理读 0 次,预读 0 次。
从以上我们可以看出,不排序的速度以及逻辑读次数都是和“order by 聚集索引列” 的速度是相当的,但这些都比“order by 非聚集索引列”的查询速度是快得多的。
同时,按照某个字段进行排序的时候,无论是正序还是倒序,速度是基本相当的。
12、高效的TOP
事实上,在查询和提取超大容量的数据集时,影响数据库响应时间的最大因素不是数据查找,而是物理的I/0操作。如:
select top 10 * from (
select top 10000 gid,fariqi,title from tgongwen
where neibuyonghu='办公室'
order by gid desc) as a
order by gid asc
这条语句,从理论上讲,整条语句的执行时间应该比子句的执行时间长,但事实相反。因为,子句执行后返回的是10000条记录,而整条语句仅返回10条语句,所以影响数据库响应时间最大的因素是物理I/O操作。而限制物理I/O操作此处的最有效方法之一就是使用TOP关键词了。TOP关键词是SQL SERVER中经过系统优化过的一个用来提取前几条或前几个百分比数据的词。经笔者在实践中的应用,发现TOP确实很好用,效率也很高。但这个词在另外一个大型数据库ORACLE中却没有,这不能说不是一个遗憾,虽然在ORACLE中可以用其他方法(如:rownumber)来解决。在以后的关于“实现千万级数据的分页显示存储过程”的讨论中,我们就将用到TOP这个关键词。
到此为止,我们上面讨论了如何实现从大容量的数据库中快速地查询出您所需要的数据方法。当然,我们介绍的这些方法都是“软”方法,在实践中,我们还要考虑各种“硬”因素,如:网络性能、服务器的性能、操作系统的性能,甚至网卡、交换机等。
建立一个web 应用,分页浏览功能必不可少。这个问题是数据库处理中十分常见的问题。经典的数据分页方法是:ADO 纪录集分页法,也就是利用ADO自带的分页功能(利用游标)来实现分页。但这种分页方法仅适用于较小数据量的情形,因为游标本身有缺点:游标是存放在内存中,很费内存。游标一建立,就将相关的记录锁住,直到取消游标。游标提供了对特定集合中逐行扫描的手段,一般使用游标来逐行遍历数据,根据取出数据条件的不同进行不同的操作。而对于多表和大表中定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等待甚至死机。
更重要的是,对于非常大的数据模型而言,分页检索时,如果按照传统的每次都加载整个数据源的方法是非常浪费资源的。现在流行的分页方法一般是检索页面大小的块区的数据,而非检索所有的数据,然后单步执行当前行。
最早较好地实现这种根据页面大小和页码来提取数据的方法大概就是“俄罗斯存储过程”。这个存储过程用了游标,由于游标的局限性,所以这个方法并没有得到大家的普遍认可。
后来,网上有人改造了此存储过程,下面的存储过程就是结合我们的办公自动化实例写的分页存储过程:
CREATE procedure pagination1
(@pagesize int, --页面大小,如每页存储20条记录
@pageindex int --当前页码
)
as
set nocount on
begin
declare @indextable table(id int identity(1,1),nid int) --定义表变量
declare @PageLowerBound int --定义此页的底码
declare @PageUpperBound int --定义此页的顶码
set @PageLowerBound=(@pageindex-1)*@pagesize
set @PageUpperBound=@PageLowerBound+@pagesize
set rowcount @PageUpperBound
insert into @indextable(nid) select gid from TGongwen where fariqi >dateadd(day,-365,getdate()) order by fariqi desc
select O.gid,O.mid,O.title,O.fadanwei,O.fariqi from TGongwen O,@indextable t where O.gid=t.nid
and t.id>@PageLowerBound and t.id<=@PageUpperBound order by t.id
end
set nocount off
以上存储过程运用了SQL SERVER的最新技术――表变量。应该说这个存储过程也是一个非常优秀的分页存储过程。当然,在这个过程中,您也可以把其中的表变量写成临时表:CREATE TABLE #Temp。但很明显,在SQL SERVER中,用临时表是没有用表变量快的。所以笔者刚开始使用这个存储过程时,感觉非常的不错,速度也比原来的ADO的好。但后来,我又发现了比此方法更好的方法。
笔者曾在网上看到了一篇小短文《从数据表中取出第n条到第m条的记录的方法》,全文如下:
从publish 表中取出第 n 条到第 m 条的记录:
SELECT TOP m-n+1 *
FROM publish
WHERE (id NOT IN
(SELECT TOP n-1 id
FROM publish))
id 为publish 表的关键字
我当时看到这篇文章的时候,真的是精神为之一振,觉得思路非常得好。等到后来,我在作办公自动化系统(ASP.net+ C#+SQL SERVER)的时候,忽然想起了这篇文章,我想如果把这个语句改造一下,这就可能是一个非常好的分页存储过程。于是我就满网上找这篇文章,没想到,文章还没找到,却找到了一篇根据此语句写的一个分页存储过程,这个存储过程也是目前较为流行的一种分页存储过程,我很后悔没有争先把这段文字改造成存储过程:
CREATE PROCEDURE pagination2
(
@SQL nVARCHAR(4000), --不带排序语句的SQL语句
@Page int, --页码
@RecsPerPage int, --每页容纳的记录数
@ID VARCHAR(255), --需要排序的不重复的ID号
@Sort VARCHAR(255) --排序字段及规则
)
AS
DECLARE @Str nVARCHAR(4000)
SET @Str='SELECT TOP '+CAST(@RecsPerPage AS VARCHAR(20))+' * FROM ('+@SQL+') T WHERE T.'+@ID+'NOT IN
(SELECT TOP '+CAST((@RecsPerPage*(@Page-1)) AS VARCHAR(20))+' '+@ID+' FROM ('+@SQL+') T9 ORDER BY '+@Sort+') ORDER BY '+@Sort
PRINT @Str
EXEC sp_ExecuteSql @Str
GO
其实,以上语句可以简化为:
SELECT TOP 页大小 *
FROM Table1
WHERE (ID NOT IN
(SELECT TOP 页大小*页数 id
FROM 表
ORDER BY id))
ORDER BY ID
但这个存储过程有一个致命的缺点,就是它含有NOT IN字样。虽然我可以把它改造为:
SELECT TOP 页大小 *
FROM Table1
WHERE not exists
(select * from (select top (页大小*页数) * from table1 order by id) b where b.id=a.id )
order by id
即,用not exists来代替not in,但我们前面已经谈过了,二者的执行效率实际上是没有区别的。
既便如此,用TOP 结合NOT IN的这个方法还是比用游标要来得快一些。
虽然用not exists并不能挽救上个存储过程的效率,但使用SQL SERVER中的TOP关键字却是一个非常明智的选择。因为分页优化的最终目的就是避免产生过大的记录集,而我们在前面也已经提到了TOP的优势,通过TOP 即可实现对数据量的控制。
在分页算法中,影响我们查询速度的关键因素有两点:TOP和NOT IN。TOP可以提高我们的查询速度,而NOT IN会减慢我们的查询速度,所以要提高我们整个分页算法的速度,就要彻底改造NOT IN,同其他方法来替代它。
我们知道,几乎任何字段,我们都可以通过max(字段)或min(字段)来提取某个字段中的最大或最小值,所以如果这个字段不重复,那么就可以利用这些不重复的字段的max或min作为分水岭,使其成为分页算法中分开每页的参照物。在这里,我们可以用操作符“>”或“<”号来完成这个使命,使查询语句符合SARG形式。如:
Select top 10 * from table1 where id>200
于是就有了如下分页方案:
select top 页大小 *
from table1
where id>
(select max (id) from
(select top ((页码-1)*页大小) id from table1 order by id) as T
)
order by id
在选择即不重复值,又容易分辨大小的列时,我们通常会选择主键。下表列出了笔者用有着1000万数据的办公自动化系统中的表,在以GID(GID是主键,但并不是聚集索引。)为排序列、提取gid,fariqi,title字段,分别以第1、10、100、500、1000、1万、10万、25万、50万页为例,测试以上三种分页方案的执行速度:(单位:毫秒)
页 码
方案1
方案2
方案3
1
60
30
76
10
46
16
63
100
1076
720
130
500
540
12943
83
1000
17110
470
250
1万
24796
4500
140
10万
38326
42283
1553
25万
28140
128720
2330
50万
121686
127846
7168
从上表中,我们可以看出,三种存储过程在执行100页以下的分页命令时,都是可以信任的,速度都很好。但第一种方案在执行分页1000页以上后,速度就降了下来。第二种方案大约是在执行分页1万页以上后速度开始降了下来。而第三种方案却始终没有大的降势,后劲仍然很足。
在确定了第三种分页方案后,我们可以据此写一个存储过程。大家知道SQL SERVER的存储过程是事先编译好的SQL语句,它的执行效率要比通过WEB页面传来的SQL语句的执行效率要高。下面的存储过程不仅含有分页方案,还会根据页面传来的参数来确定是否进行数据总数统计。
-- 获取指定页的数据
CREATE PROCEDURE pagination3
@tblName varchar(255), -- 表名
@strGetFields varchar(1000) = '*', -- 需要返回的列
@fldName varchar(255)='', -- 排序的字段名
@PageSize int = 10, -- 页尺寸
@PageIndex int = 1, -- 页码
@doCount bit = 0, -- 返回记录总数, 非 0 值则返回
@OrderType bit = 0, -- 设置排序类型, 非 0 值则降序
@strWhere varchar(1500) = '' -- 查询条件 (注意: 不要加 where)
AS
declare @strSQL varchar(5000) -- 主语句
declare @strTmp varchar(110) -- 临时变量
declare @strOrder varchar(400) -- 排序类型
if @doCount != 0
begin
if @strWhere !=''
set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
else
set @strSQL = "select count(*) as Total from [" + @tblName + "]"
end
--以上代码的意思是如果@doCount传递过来的不是0,就执行总数统计。以下的所有代码都是@doCount为0的情况
else
begin
if @OrderType != 0
begin
set @strTmp = "<(select min"
set @strOrder = " order by [" + @fldName +"] desc"
--如果@OrderType不是0,就执行降序,这句很重要!
end
else
begin
set @strTmp = ">(select max"
set @strOrder = " order by [" + @fldName +"] asc"
end
if @PageIndex = 1
begin
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from [" + @tblName + "] where " + @strWhere + " " + @strOrder
else
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["+ @tblName + "] "+ @strOrder
--如果是第一页就执行以上代码,这样会加快执行速度
end
else
begin
--以下代码赋予了@strSQL以真正执行的SQL代码
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
+ @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
+ @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
end
end
exec (@strSQL)
GO
上面的这个存储过程是一个通用的存储过程,其注释已写在其中了。
在大数据量的情况下,特别是在查询最后几页的时候,查询时间一般不会超过9秒;而用其他存储过程,在实践中就会导致超时,所以这个存储过程非常适用于大容量数据库的查询。
笔者希望能够通过对以上存储过程的解析,能给大家带来一定的启示,并给工作带来一定的效率提升,同时希望同行提出更优秀的实时数据分页算法。
四、聚集索引的重要性和如何选择聚集索引
在上一节的标题中,笔者写的是:实现小数据量和海量数据的通用分页显示存储过程。这是因为在将本存储过程应用于“办公自动化”系统的实践中时,笔者发现这第三种存储过程在小数据量的情况下,有如下现象:
1、分页速度一般维持在1秒和3秒之间。
2、在查询最后一页时,速度一般为5秒至8秒,哪怕分页总数只有3页或30万页。
虽然在超大容量情况下,这个分页的实现过程是很快的,但在分前几页时,这个1-3秒的速度比起第一种甚至没有经过优化的分页方法速度还要慢,借用户的话说就是“还没有ACCESS数据库速度快”,这个认识足以导致用户放弃使用您开发的系统。
笔者就此分析了一下,原来产生这种现象的症结是如此的简单,但又如此的重要:排序的字段不是聚集索引!
本篇文章的题目是:“查询优化及分页算法方案”。笔者只所以把“查询优化”和“分页算法”这两个联系不是很大的论题放在一起,就是因为二者都需要一个非常重要的东西――聚集索引。
在前面的讨论中我们已经提到了,聚集索引有两个最大的优势:
1、以最快的速度缩小查询范围。
2、以最快的速度进行字段排序。
第1条多用在查询优化时,而第2条多用在进行分页时的数据排序。
而聚集索引在每个表内又只能建立一个,这使得聚集索引显得更加的重要。聚集索引的挑选可以说是实现“查询优化”和“高效分页”的最关键因素。
但要既使聚集索引列既符合查询列的需要,又符合排序列的需要,这通常是一个矛盾。
笔者前面“索引”的讨论中,将fariqi,即用户发文日期作为了聚集索引的起始列,日期的精确度为“日”。这种作法的优点,前面已经提到了,在进行划时间段的快速查询中,比用ID主键列有很大的优势。
但在分页时,由于这个聚集索引列存在着重复记录,所以无法使用max或min来最为分页的参照物,进而无法实现更为高效的排序。而如果将ID主键列作为聚集索引,那么聚集索引除了用以排序之外,没有任何用处,实际上是浪费了聚集索引这个宝贵的资源。
为解决这个矛盾,笔者后来又添加了一个日期列,其默认值为getdate()。用户在写入记录时,这个列自动写入当时的时间,时间精确到毫秒。即使这样,为了避免可能性很小的重合,还要在此列上创建UNIQUE约束。将此日期列作为聚集索引列。
有了这个时间型聚集索引列之后,用户就既可以用这个列查找用户在插入数据时的某个时间段的查询,又可以作为唯一列来实现max或min,成为分页算法的参照物。
经过这样的优化,笔者发现,无论是大数据量的情况下还是小数据量的情况下,分页速度一般都是几十毫秒,甚至0毫秒。而用日期段缩小范围的查询速度比原来也没有任何迟钝。
聚集索引是如此的重要和珍贵,所以笔者总结了一下,一定要将聚集索引建立在:
1、您最频繁使用的、用以缩小查询范围的字段上;
2、您最频繁使用的、需要排序的字段上。
最大的开销一般是用于数据缓存,如果内存足够,它会把用过的数据和觉得你会用到的数据统统扔到内存中,直到内存不足的时候,才把命中率低的数据给清掉。所以一般我们在看statistics io的时候,看到的physics read都是0。
其次就是查询的开销,一般地说,hash join是会带来比较大的内存开销的,而merge join和nested loop的开销比较小,还有排序和中间表、游标也是会有比较大的开销的。
所以用于关联和排序的列上一般需要有索引。
再其次就是对执行计划、系统数据的存储,这些都是比较小的。