题意:
给出\(n\) 个点,\(m\)条边的无向带权图,初始边权都为\(1\),一共有\(k\) 次操作机会,每次操作可以选择一条边使其边权\(+1\), 通过一条边的时间为 \(1/\)边权 ,求\(min(dis(s1,t1)+dis(s2,t2))\)
题解:
考虑枚举两条路径的公共起点和终点,假设长度 \(x\) , 对于剩下的各自走的边长度为 \(y\) ,贪心的考虑,肯定是将操作次数均分最好,即对于长度为\(l\) ,操作次数为 \(t\) ,最优时间肯定是 \((t\%l)/(2+t/l)+(l-t\%l)/(1+t/l)\)
然后考虑三分公共路径上分到的操作次数 ,时间复杂度为\(O(n^2logn)\) ,会\(tle\)
再贪心的想,对于公共长度固定,那肯定是让各自长度越小越好,所有可以先\(n^2\) 跑最短路,然后预处理出每个公共长度的最小各自长度 ,最后再三分即可。
代码:
#pragma GCC diagnostic error "-std=c++11"
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7;
const int MAXN=5e3+5;
const int inf=0x3f3f3f3f;
int dis[MAXN][MAXN],vis[MAXN];
vector<int> g[MAXN];
int dp[MAXN];
int n, m, k;
void bfs(int u)
{
dis[u][u] = 0;
queue<pii> q;
q.push({ u, 0 });
vis[u] = 1;
while(!q.empty())
{
pii now = q.front();
q.pop();
for(auto v:g[now.first])
{
if(vis[v])
continue;
dis[u][v] = dis[u][now.first] + 1;
vis[v] = 1;
q.push({ v, dis[u][v] });
}
}
}
bool ok(int s,int i,int j,int t)
{
if(dis[s][i]!=inf&&dis[i][j]!=inf&&dis[j][t]!=inf)
return true;
else
return false;
}
double get_cost(int x,int y)
{
int c1 = 1 + y / x;
int c2 = 2 + y / x;
double ans1 = 1.0 * (x - y % x) / c1;
double ans2 = 1.0 * (y % x) / c2;
return ans1 + ans2;
}
double cal(int x,int y)
{
if(!x&&!y)
return 0;
else if(!x)
return 2*get_cost(y,k);
else if(!y)
return get_cost(x,k);
else
{
double ans = 1e9;
int l = 0, r = k;
while(l<=r)
{
int mid1 = l + (r - l) / 3;
int mid2 = r - (r - l) / 3;
double v1 = 2 * get_cost(y, mid1) + get_cost(x, k - mid1);
double v2 = 2 * get_cost(y, mid2) + get_cost(x, k - mid2);
if(v1<v2)
{
ans = v1;
r = mid2-1;
}
else
{
ans = v2;
l = mid1+1;
}
}
return ans;
}
}
int main()
{
memset(dis, inf, sizeof dis);
memset(dp, inf, sizeof dp);
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= m;i++)
{
int u, v;
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
int s1, t1, s2, t2;
scanf("%d%d%d%d", &s1, &t1, &s2, &t2);
for (int i = 1; i <= n;i++)
{
for (int j = 1; j <= n;j++)
vis[j] = 0;
bfs(i);
}
//cout << 1 << endl;
dp[0] = dis[s1][t1] + dis[s2][t2];
for (int i = 1; i <= n;i++)
{
for (int j = 1; j <= n;j++)
{
if ((ok(s1, i, j, t1) || ok(s1, j, i, t1)) && (ok(s2, i, j, t2) || ok(s2, j, i, t2)))
{
int d = dis[i][j];
dp[d] = min(dp[d], min(dis[s1][i] + dis[j][t1], dis[s1][j] + dis[i][t1]) + min(dis[s2][i] + dis[j][t2], dis[s2][j] + dis[i][t2]));
}
}
}
double ans = 1e9;
//cout << 1 << endl;
for (int i = 0; i <= n;i++)
{
if(dp[i]==inf)
continue;
ans = min(ans, cal(dp[i], i));
}
printf("%.15lf\n", ans);
}