[Ynoi2018] 未来日记 Solution

先考虑分块做区间第 \(k\) 大。

令 \(cnt_{i,j}\) 表示第 \(i\) 块中 \(j\) 的出现次数, \(sum1_{i,j}\) 表示前 \(i\) 块中 \(j\) 的出现次数。

然后我们发现,只用这些信息会多一个 \(\log\)。

注意到值域是 \(1 \times 10^5\) ,考虑权值分块。

再记 \(sum2_{i,j}\) 表示序列分块的前 \(i\) 块中,权值分块前 \(j\) 块中的树的出现次数。

询问时散块维护 \(s1,s2\) 两个数组,\(s1_i\) 累加权值分块前 \(i\) 块中的数,\(s2_i\) 累加 \(i\) 的出现次数。

利用 \(sum2\) 以及 \(s1\) 的信息得到第 \(k\) 大落在哪个权值块中 ,再利用 \(sum1\) 与 \(s2\) 得到答案。

现在来考虑修改,不妨想象一下,\(x \to y\),\(y \to z\) 的结果是原先的 \(x,y \to z\) 。可以注意到这是一个树形结构,自然可以用并查集维护。

具体的,给序列块 \(i\) 中每个值 \(x\) 发一个代表,记作 \(rt_{i,x}\) ,对于一组修改 \((i\) , \(x\) , \(y)\) ,若 \(rt_{i,y}\) 不存在,令 \(rt_{i,y} \to rt_{i,x}\) ,\(a_{rt_{i,x}} \to y\) ,反之令 \(fa_{rt_{i,x}} \to rt_{i,y}\)。

散块并不适合套用这个方法,众所周知,边角暴力,直接重构 \(x\),\(y\) 的并查集子树。注意在所有修改后都需更新 \(cnt\) , \(sum1\) , \(sum2\)。

取序列块长 \(600\) ,值域块长 \(320\),以下是代码:

#include <cstdio>
#include <iostream>
#include <algorithm>

inline int read() {
	register char c = getchar();
	register int x = 0, f = 1;
	while(c < '0' || c > '9') {
		if (c == '-')
			f = -1;
		c = getchar();
	}
	while(c >= '0' && c <= '9') {
		x = (x << 3) + (x << 1) + c - 48;
		c = getchar();
	}
	return x * f;
}

const int N = 1e5 + 5;
const int M = 170;
const int S = 320;

int n, m, bl, a[N];
int top = 0, sta[N];
int L[M], R[M], bel[N], s1[S], s2[N]; 
int cnt[M][N], sumc[M][N], sums[M][S];

int fa[N], rt[M][N];
int find(int x) { return (fa[x] == x ? x : fa[x] = find(fa[x])); }

void Build(int b) {
	for (register int i = L[b]; i <= R[b]; i++) {
		if (!rt[b][a[i]])
			rt[b][a[i]] = i;
		else
			fa[i] = rt[b][a[i]];
		cnt[b][a[i]]++;
	}
}

void ReBuild(int b, int l, int r, int x, int y) {
	register int tmp = 0;
	top = 0;
	rt[b][x] = rt[b][y] = 0;
	for (register int i = L[b]; i <= R[b]; i++) {
		a[i] = a[find(i)];
		if (a[i] == x || a[i] == y)
			sta[++top] = i;
	}
	for (register int i = l; i <= r; i++) 
		if (a[i] == x)
			a[i] = y, tmp++;
	cnt[b][x] -= tmp, cnt[b][y] += tmp;
	for (register int i = 1; i <= top; i++)
		fa[sta[i]] = sta[i];
	for (register int i = 1; i <= top; i++) {
		if (!rt[b][a[sta[i]]])
			rt[b][a[sta[i]]] = sta[i];
		else
			fa[sta[i]] = rt[b][a[sta[i]]]; 
	}
	for (register int i = b; i <= bl; i++) {
		sumc[i][x] -= tmp, sumc[i][y] += tmp;
		if (bel[x] != bel[y])
			sums[i][bel[x]] -= tmp, sums[i][bel[y]] += tmp;
	}
}

int main() {
	scanf("%d%d", &n, &m);
	for (register int i = 1; i <= n; i++) {
//		scanf("%d", &a[i]);
		a[i] = read();
		fa[i] = i;
	}
	int Siz = 600, Sizv = 317, Mv = 1e5;
	bl = (n - 1) / Siz + 1;	
	for (register int i = 1; i <= Mv; i++)
		bel[i] = (i - 1) / Sizv + 1;
	for (register int i = 1; i <= bl; i++) {
		L[i] = (i - 1) * Siz +1;
		R[i] = std :: min(i * Siz, n);
		Build(i);
		for (register int j = 1; j <= Sizv; j++)
			sums[i][j] = sums[i - 1][j];
		for (register int j = 1; j <= Mv; j++)
			sumc[i][j] = sumc[i - 1][j] + cnt[i][j];
		for (register int j = L[i]; j <= R[i]; j++)
			sums[i][bel[a[j]]]++;		
	}
	while (m--) {
		register int opt, x, y, l, r, k;
//		scanf("%d", &opt);
		opt = read();
		if (opt == 1) {
//			scanf("%d%d%d%d", &l, &r, &x, &y);
			l = read(), r = read(), x = read(), y = read();
			if (x == y)
				continue;
			register int lb = (l - 1) / Siz + 1;
			register int rb = (r - 1) / Siz + 1;
			if (lb == rb)
				ReBuild(lb, l, r, x, y);
			else {
				ReBuild(lb, l, R[lb], x, y);
				ReBuild(rb, L[rb], r, x, y);
				register int tmp = 0, tmps = 0;
				for (register int i = lb + 1; i <= rb - 1; i++) {
					if (rt[i][x]) {
						if (!rt[i][y])
							rt[i][y] = rt[i][x], a[rt[i][x]] = y;
						else
							fa[rt[i][x]] = rt[i][y];
//						tmps += tmp = cnt[i][x];
						rt[i][x] = 0;
						tmp = cnt[i][x];
						tmps += tmp;
						cnt[i][y] += tmp, cnt[i][x] = 0; 
					}
					sumc[i][x] -= tmps, sumc[i][y] += tmps;
					if (bel[x] != bel[y])
						sums[i][bel[x]] -= tmps, sums[i][bel[y]] += tmps;
				}
				for (register int i = rb; i <= bl; i++) {
					sumc[i][x] -= tmps, sumc[i][y] += tmps;
					if (bel[x] != bel[y])
						sums[i][bel[x]] -= tmps, sums[i][bel[y]] += tmps;
				}
			}
		}
		else {
//			scanf("%d%d%d", &l , &r, &k);
			l = read(), r = read(), k = read();
			register int lb = (l - 1) / Siz + 1;
			register int rb = (r - 1) / Siz + 1;
			if (lb == rb) {
				for (register int i = l; i <= r; i++) {
					a[i] = a[find(i)];
					s1[bel[a[i]]]++;
					s2[a[i]]++;
				}
				register int vl, vr, sum = 0;
				for (register int i = 1; i <= Sizv; i++) {
					sum += s1[i];
					if (sum >= k) {
						sum -= s1[i];
						vl = (i - 1) * Sizv + 1, vr = i * Sizv;
						break;
					}
				}
				for (register int i = vl; i <= vr; i++) {
					sum += s2[i];
					if (sum >= k) {
						printf("%d\n", i);
						break;
					}
				}
				for (register int i = l; i <= r; i++)
					s2[a[i]]--, s1[bel[a[i]]]--;
			}
			else {
				for (register int i = l; i <= R[lb]; i++) {
					a[i] = a[find(i)];
					s1[bel[a[i]]]++;
					s2[a[i]]++;
				}
				for(register int i = L[rb]; i <= r; i++) {
					a[i] = a[find(i)];
					s1[bel[a[i]]]++;
					s2[a[i]]++;
				}
				register int vl, vr, sum = 0;
				for (register int i = 1; i <= Sizv; i++) {
					sum += s1[i] + sums[rb - 1][i] - sums[lb][i];
					if (sum >= k) {
						sum -= s1[i] + sums[rb - 1][i] - sums[lb][i];
						vl = (i - 1) * Sizv + 1, vr = i * Sizv;
						break;
					}
				}
				for (register int i = vl; i <= vr; i++) {
					sum += s2[i] + sumc[rb - 1][i] - sumc[lb][i];
					if (sum >= k) {
						printf("%d\n", i);
						break;
					} 
				}
				for (register int i = l; i <= R[lb]; i++) {
					s1[bel[a[i]]]--;
					s2[a[i]]--;
				}
				for (register int i = L[rb]; i <= r; i++) {
					s1[bel[a[i]]]--;
					s2[a[i]]--;
				}
			}
		}
	}
	return 0;
}
上一篇:[考试总结]noip模拟34


下一篇:C# 注册表基本操作