TLD跟踪算法优化(一)并行化

才学疏浅,仅仅言片语,仅仅求志同道的朋友一起交流研究。

并行化不算是算法的改进,仅仅是追求执行的实时性。

简要列举一个样例:

TLD算法的C++版本号源代码里:

LKTracker::trackf2f(const Mat& img1, const Mat& img2,vector<Point2f> &points1, vector<cv::Point2f> &points2){

bool LKTracker::trackf2f(const Mat& img1, const Mat& img2,vector<Point2f> &points1, vector<cv::Point2f> &points2){
//TODO!:implement c function cvCalcOpticalFlowPyrLK() or Faster tracking function
//Forward-Backward tracking
#pragma omp parallel sections //声明该并行区域分为若干个section,section之间的执行顺序为并行的关系
{
#pragma omp section //第一个section,由某个线程单独完毕
//前向轨迹跟踪
calcOpticalFlowPyrLK( img1,img2, points1, points2, status,similarity, window_size, level, term_criteria, lambda, 0); #pragma omp section //第二个section,由某个线程单独完毕
//后向轨迹跟踪
calcOpticalFlowPyrLK( img2,img1, points2, pointsFB, FB_status,FB_error, window_size, level, term_criteria, lambda, 0);
}
//前向轨迹跟踪
// calcOpticalFlowPyrLK( img1,img2, points1, points2, status,similarity, window_size, level, term_criteria, lambda, 0);
//后向轨迹跟踪
//calcOpticalFlowPyrLK( img2,img1, points2, pointsFB, FB_status,FB_error, window_size, level, term_criteria, lambda, 0); //Compute the real FB-error
/*
原理非常easy:从t时刻的图像的A点,跟踪到t+1时刻的图像B点;然后倒回来
从t+1时刻的图像的B点往回跟踪,假如跟踪到t时刻的图像的C点,这样就产
生了前向和后向两个轨迹,比較t时刻中A点和C点的距离,假设距离小于某个
阈值,那么就觉得前向跟踪是正确的;这个距离就是FB_error
*/
//计算前向与后向轨迹的误差。
#pragma omp parallel for
for( int i= 0; i<points1.size(); ++i ){
FB_error[i] = norm(pointsFB[i]-points1[i]); //norm求矩阵或向量的
//范数,或绝对值
}
//Filter out points with FB_error[i] > median(FB_error) && points with sim_error[i] > median(sim_error)
normCrossCorrelation(img1,img2,points1,points2);
return filterPts(points1,points2);
}

改动后代码执行速度提高了不少。

只是并行化处理,必须考虑到一些问题

1.数据的相互排斥问题

2.线程的分配问题

3.Release版本号应用程序对于for循环能够自己主动优化,不用对for做多线程设定,主要还是放在模块化的数据处理并行化上。

上一篇:vs2013修改为双击打开文件


下一篇:leetcode171 Excel Sheet Column Number