ARM Cache Invalidate Flush

 

https://github.com/FreeRTOS/FreeRTOS/blob/9c0c37ab9b56f2c90085b78df2f58b5833e473db/FreeRTOS/Demo/CORTEX_A9_Zynq_ZC702/RTOSDemo_bsp/ps7_cortexa9_0/libsrc/standalone_v6_6/src/xil_cache.c

 

 

/******************************************************************************
*
* Copyright (C) 2010 - 2015 Xilinx, Inc.  All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xil_cache.c
*
* Contains required functions for the ARM cache functionality.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver    Who Date     Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a  ecm 01/29/10 First release
* 1.00a  ecm 06/24/10 Moved the L1 and L2 specific function prototypes
*                        to xil_cache_mach.h to give access to sophisticated users
* 3.02a  sdm 04/07/11 Updated Flush/InvalidateRange APIs to flush/invalidate
*                        L1 and L2 caches in a single loop and used dsb, L2 sync
*                        at the end of the loop.
* 3.04a  sdm 01/02/12 Remove redundant dsb/dmb instructions in cache maintenance
*                        APIs.
* 3.07a  asa 07/16/12 Corrected the L1 and L2 cache invalidation order.
* 3.07a  sgd 09/18/12 Corrected the L2 cache enable and disable sequence.
* 3.10a  srt 04/18/13 Implemented ARM Erratas. Please refer to file
*                        ‘xil_errata.h‘ for errata description
* 3.10a  asa 05/13/13 Modified cache disable APIs. The L2 cache disable
*                        operation was being done with L1 Data cache disabled. This is
*                        fixed so that L2 cache disable operation happens independent of
*                        L1 cache disable operation. This fixes CR #706464.
*                        Changes are done to do a L2 cache sync (poll reg7_?cache_?sync).
*                        This is done to fix the CR #700542.
* 3.11a  asa 09/23/13 Modified the Xil_DCacheFlushRange and
*                       Xil_DCacheInvalidateRange to fix potential issues. Fixed other
*                       relevant cache APIs to disable and enable back the interrupts.
*                       This fixes CR #663885.
* 3.11a  asa 09/28/13 Made changes for L2 cache sync operation. It is found
*                       out that for L2 cache flush/clean/invalidation by cache lines
*                       does not need a cache sync as these are atomic nature. Similarly
*                       figured out that for complete L2 cache flush/invalidation by way
*                       we need to wait for some more time in a loop till the status
*                       shows that the cache operation is completed.
* 4.00     pkp 24/01/14 Modified Xil_DCacheInvalidateRange to fix the bug. Few
*                       cache lines were missed to invalidate when unaligned address
*                       invalidation was accommodated. That fixes CR #766768.
*                       Also in Xil_L1DCacheInvalidate, while invalidating all L1D cache
*                       stack memory which contains return address was invalidated. So
*                       stack memory was flushed first and then L1D cache is invalidated.
*                       This is done to fix CR #763829
* 4.01   asa 05/09/14 Made changes in cortexa9/xil_cache.c to fix CR# 798230.
* 4.02     pkp 06/27/14 Added notes to Xil_L1DCacheInvalidateRange function for
*                      explanation of CR#785243
* 5.00   kvn 12/15/14 Xil_L2CacheInvalidate was modified to fix CR# 838835. L2 Cache
*                      has stack memory which has return address. Before invalidating
*                      cache, stack memory was flushed first and L2 Cache is invalidated.
* 5.01     pkp 05/12/15 Xil_DCacheInvalidateRange and Xil_DCacheFlushRange is modified
*                      to remove unnecessary dsb in the APIs. Instead of using dsb
*                      for L2 Cache, L2CacheSync has been used for each L2 cache line
*                      and single dsb has been used for L1 cache. Also L2CacheSync is
*                      added into Xil_L2CacheInvalidateRange API. Xil_L1DCacheInvalidate
*                      and Xil_L2CacheInvalidate APIs are modified to flush the complete
*                      stack instead of just System Stack
* 5.03     pkp 10/07/15 L2 Cache functionalities are avoided for the OpenAMP slave
*                      application(when USE_AMP flag is defined for BSP) as master CPU
*                      would be utilizing L2 cache for its operation
* 6.6    mus 12/07/17 Errata 753970 is not applicable for the PL130 cache controller
*                     version r0p2, which is present in zynq. So,removed the handling
*                     related to same.It fixes CR#989132.
* 6.6    asa 16/01/18 Changes made in Xil_L1DCacheInvalidate and Xil_L2CacheInvalidate
*                      routines to ensure the stack data flushed only when the respective
*                      caches are enabled. This fixes CR-992023.
*
* </pre>
*
******************************************************************************/

/***************************** Include Files *********************************/

#include "xil_cache.h"
#include "xil_cache_l.h"
#include "xil_io.h"
#include "xpseudo_asm.h"
#include "xparameters.h"
#include "xreg_cortexa9.h"
#include "xl2cc.h"
#include "xil_errata.h"
#include "xil_exception.h"

/************************** Function Prototypes ******************************/

/************************** Variable Definitions *****************************/

#define IRQ_FIQ_MASK 0xC0U    /* Mask IRQ and FIQ interrupts in cpsr */

#ifdef __GNUC__
    extern s32  _stack_end;
    extern s32  __undef_stack;
#endif

#ifndef USE_AMP
/****************************************************************************
*
* Access L2 Debug Control Register.
*
* @param    Value, value to be written to Debug Control Register.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
#ifdef __GNUC__
static inline void Xil_L2WriteDebugCtrl(u32 Value)
#else
static void Xil_L2WriteDebugCtrl(u32 Value)
#endif
{
#if defined(CONFIG_PL310_ERRATA_588369) || defined(CONFIG_PL310_ERRATA_727915)
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_DEBUG_CTRL_OFFSET, Value);
#else
    (void)(Value);
#endif
}

/****************************************************************************
*
* Perform L2 Cache Sync Operation.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
#ifdef __GNUC__
static inline void Xil_L2CacheSync(void)
#else
static void Xil_L2CacheSync(void)
#endif
{
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_SYNC_OFFSET, 0x0U);
}
#endif
/****************************************************************************/
/**
* @brief    Enable the Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheEnable(void)
{
    Xil_L1DCacheEnable();
#ifndef USE_AMP
    Xil_L2CacheEnable();
#endif
}

/****************************************************************************/
/**
* @brief    Disable the Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheDisable(void)
{
#ifndef USE_AMP
    Xil_L2CacheDisable();
#endif
    Xil_L1DCacheDisable();
}

/****************************************************************************/
/**
* @brief    Invalidate the entire Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheInvalidate(void)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
#ifndef USE_AMP
    Xil_L2CacheInvalidate();
#endif
    Xil_L1DCacheInvalidate();

    mtcpsr(currmask);
}

/*****************************************************************************/
/**
* @brief    Invalidate a Data cache line. If the byte specified by the address
*             (adr) is cached by the Data cache, the cacheline containing that
*             byte is invalidated. If the cacheline is modified (dirty), the
*             modified contents are lost and are NOT written to the system memory
*             before the line is invalidated.
*
* @param    adr: 32bit address of the data to be flushed.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_DCacheInvalidateLine(u32 adr)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
#ifndef USE_AMP
    Xil_L2CacheInvalidateLine(adr);
#endif
    Xil_L1DCacheInvalidateLine(adr);

    mtcpsr(currmask);
}


/*****************************************************************************/
/**
* @brief    Invalidate the Data cache for the given address range.
*             If the bytes specified by the address range are cached by the Data
*            cache, the cachelines containing those bytes are invalidated. If
*            the cachelines are modified (dirty), the modified contents are lost
*            and NOT written to the system memory before the lines are
*            invalidated.
*
*             In this function, if start address or end address is not aligned to
*             cache-line, particular cache-line containing unaligned start or end
*             address is flush first and then invalidated the others as
*             invalidating the same unaligned cache line may result into loss of
*            data. This issue raises few possibilities.
*
*             If the address to be invalidated is not cache-line aligned, the
*             following choices are available:
*             1. Invalidate the cache line when required and do not bother much
*             for the side effects. Though it sounds good, it can result in
*             hard-to-debug issues. The problem is, if some other variable are
*             allocated in the same cache line and had been recently updated
*             (in cache), the invalidation would result in loss of data.
*             2. Flush the cache line first. This will ensure that if any other
*             variable present in the same cache line and updated recently are
*             flushed out to memory. Then it can safely be invalidated. Again it
*             sounds good, but this can result in issues. For example, when the
*             invalidation happens in a typical ISR (after a DMA transfer has
*             updated the memory), then flushing the cache line means, loosing
*             data that were updated recently before the ISR got invoked.
*
*             Linux prefers the second one. To have uniform implementation
*             (across standalone and Linux), the second option is implemented.
*             This being the case, follwoing needs to be taken care of:
*             1. Whenever possible, the addresses must be cache line aligned.
*             Please nore that, not just start address, even the end address must
*             be cache line aligned. If that is taken care of, this will always
*            work.
*             2. Avoid situations where invalidation has to be done after the
*             data is updated by peripheral/DMA directly into the memory. It is
*             not tough to achieve (may be a bit risky). The common use case to
*             do invalidation is when a DMA happens. Generally for such use
*            cases, buffers can be allocated first and then start the DMA. The
*             practice that needs to be followed here is, immediately after
*             buffer allocation and before starting the DMA, do the invalidation.
*             With this approach, invalidation need not to be done after the DMA
*            transfer is over.
*
*             This is going to always work if done carefully.
*             However, the concern is, there is no guarantee that invalidate has
*             not needed to be done after DMA is complete. For example, because
*             of some reasons if the first cache line or last cache line
*             (assuming the buffer in question comprises of multiple cache lines)
*            are brought into cache (between the time it is invalidated and DMA
*             completes) because of some speculative prefetching or reading data
*             for a variable present in the same cache line, then we will have to
*            invalidate the cache after DMA is complete.
*
*
* @param    adr: 32bit start address of the range to be invalidated.
* @param    len: Length of the range to be invalidated in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheInvalidateRange(INTPTR adr, u32 len)
{
    const u32 cacheline = 32U;
    u32 end;
    u32 tempadr = adr;
    u32 tempend;
    u32 currmask;
    volatile u32 *L2CCOffset = (volatile u32 *)(XPS_L2CC_BASEADDR +
                    XPS_L2CC_CACHE_INVLD_PA_OFFSET);

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        end = tempadr + len;
        tempend = end;
        /* Select L1 Data cache in CSSR */
        mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);

        if ((tempadr & (cacheline-1U)) != 0U) {
            tempadr &= (~(cacheline - 1U));

            Xil_L1DCacheFlushLine(tempadr);
#ifndef USE_AMP
            /* Disable Write-back and line fills */
            Xil_L2WriteDebugCtrl(0x3U);
            Xil_L2CacheFlushLine(tempadr);
            /* Enable Write-back and line fills */
            Xil_L2WriteDebugCtrl(0x0U);
            Xil_L2CacheSync();
#endif
            tempadr += cacheline;
        }
        if ((tempend & (cacheline-1U)) != 0U) {
            tempend &= (~(cacheline - 1U));

            Xil_L1DCacheFlushLine(tempend);
#ifndef USE_AMP
            /* Disable Write-back and line fills */
            Xil_L2WriteDebugCtrl(0x3U);
            Xil_L2CacheFlushLine(tempend);
            /* Enable Write-back and line fills */
            Xil_L2WriteDebugCtrl(0x0U);
            Xil_L2CacheSync();
#endif
        }

        while (tempadr < tempend) {
#ifndef USE_AMP
            /* Invalidate L2 cache line */
            *L2CCOffset = tempadr;
            Xil_L2CacheSync();
#endif

    /* Invalidate L1 Data cache line */
#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_inval_dc_line_mva_poc(tempadr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_INVAL_DC_LINE_MVA_POC);
              Reg = tempadr; }
#endif
            tempadr += cacheline;
        }
    }

    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Flush the entire Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheFlush(void)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
    Xil_L1DCacheFlush();
#ifndef USE_AMP
    Xil_L2CacheFlush();
#endif
    mtcpsr(currmask);
}


/****************************************************************************/
/**
* @brief    Flush a Data cache line. If the byte specified by the address (adr)
*             is cached by the Data cache, the cacheline containing that byte is
*             invalidated. If the cacheline is modified (dirty), the entire
*             contents of the cacheline are written to system memory before the
*             line is invalidated.
*
* @param    adr: 32bit address of the data to be flushed.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_DCacheFlushLine(u32 adr)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
    Xil_L1DCacheFlushLine(adr);
#ifndef USE_AMP
    /* Disable Write-back and line fills */
    Xil_L2WriteDebugCtrl(0x3U);

    Xil_L2CacheFlushLine(adr);

    /* Enable Write-back and line fills */
    Xil_L2WriteDebugCtrl(0x0U);
    Xil_L2CacheSync();
#endif
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Flush the Data cache for the given address range.
*             If the bytes specified by the address range are cached by the
*             data cache, the cachelines containing those bytes are invalidated.
*             If the cachelines are modified (dirty), they are written to the
*             system memory before the lines are invalidated.
*
* @param    adr: 32bit start address of the range to be flushed.
* @param    len: Length of the range to be flushed in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_DCacheFlushRange(INTPTR adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    u32 currmask;
    volatile u32 *L2CCOffset = (volatile u32 *)(XPS_L2CC_BASEADDR +
                    XPS_L2CC_CACHE_INV_CLN_PA_OFFSET);

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr &= ~(cacheline - 1U);

        while (LocalAddr < end) {

    /* Flush L1 Data cache line */
#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_clean_inval_dc_line_mva_poc(LocalAddr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC);
              Reg = LocalAddr; }
#endif
#ifndef USE_AMP
            /* Flush L2 cache line */
            *L2CCOffset = LocalAddr;
            Xil_L2CacheSync();
#endif
            LocalAddr += cacheline;
        }
    }
    dsb();
    mtcpsr(currmask);
}
/****************************************************************************/
/**
* @brief    Store a Data cache line. If the byte specified by the address (adr)
*             is cached by the Data cache and the cacheline is modified (dirty),
*             the entire contents of the cacheline are written to system memory.
*             After the store completes, the cacheline is marked as unmodified
*             (not dirty).
*
* @param    adr: 32bit address of the data to be stored.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_DCacheStoreLine(u32 adr)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    Xil_L1DCacheStoreLine(adr);
#ifndef USE_AMP
    Xil_L2CacheStoreLine(adr);
#endif
    mtcpsr(currmask);
}

/***************************************************************************/
/**
* @brief    Enable the instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_ICacheEnable(void)
{
    Xil_L1ICacheEnable();
#ifndef USE_AMP
    Xil_L2CacheEnable();
#endif
}

/***************************************************************************/
/**
* @brief    Disable the instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_ICacheDisable(void)
{
#ifndef USE_AMP
    Xil_L2CacheDisable();
#endif
    Xil_L1ICacheDisable();
}


/****************************************************************************/
/**
* @brief    Invalidate the entire instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_ICacheInvalidate(void)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
#ifndef USE_AMP
    Xil_L2CacheInvalidate();
#endif
    Xil_L1ICacheInvalidate();

    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Invalidate an instruction cache line. If the instruction specified
*            by the address is cached by the instruction cache, the cacheline
*            containing that instruction is invalidated.
*
* @param    adr: 32bit address of the instruction to be invalidated.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_ICacheInvalidateLine(u32 adr)
{
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
#ifndef USE_AMP
    Xil_L2CacheInvalidateLine(adr);
#endif
    Xil_L1ICacheInvalidateLine(adr);
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Invalidate the instruction cache for the given address range.
*             If the instructions specified by the address range are cached by
*             the instrunction cache, the cachelines containing those
*            instructions are invalidated.
*
* @param    adr: 32bit start address of the range to be invalidated.
* @param    len: Length of the range to be invalidated in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_ICacheInvalidateRange(INTPTR adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    volatile u32 *L2CCOffset = (volatile u32 *)(XPS_L2CC_BASEADDR +
                    XPS_L2CC_CACHE_INVLD_PA_OFFSET);

    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Select cache L0 I-cache in CSSR */
        mtcp(XREG_CP15_CACHE_SIZE_SEL, 1U);

        while (LocalAddr < end) {
#ifndef USE_AMP
        /* Invalidate L2 cache line */
        *L2CCOffset = LocalAddr;
        dsb();
#endif

        /* Invalidate L1 I-cache line */
#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_inval_ic_line_mva_pou(LocalAddr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_INVAL_IC_LINE_MVA_POU);
              Reg = LocalAddr; }
#endif

            LocalAddr += cacheline;
        }
    }

    /* Wait for L1 and L2 invalidate to complete */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Enable the level 1 Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1DCacheEnable(void)
{
    register u32 CtrlReg;

    /* enable caches only if they are disabled */
#ifdef __GNUC__
    CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_SYS_CONTROL);
      CtrlReg = Reg; }
#endif
    if ((CtrlReg & (XREG_CP15_CONTROL_C_BIT)) != 0U) {
        return;
    }

    /* clean and invalidate the Data cache */
    Xil_L1DCacheInvalidate();

    /* enable the Data cache */
    CtrlReg |= (XREG_CP15_CONTROL_C_BIT);

    mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}

/***************************************************************************/
/**
* @brief    Disable the level 1 Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1DCacheDisable(void)
{
    register u32 CtrlReg;

    /* clean and invalidate the Data cache */
    Xil_L1DCacheFlush();

#ifdef __GNUC__
    /* disable the Data cache */
    CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_SYS_CONTROL);
      CtrlReg = Reg; }
#endif

    CtrlReg &= ~(XREG_CP15_CONTROL_C_BIT);

    mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}

/****************************************************************************/
/**
* @brief    Invalidate the level 1 Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        In Cortex A9, there is no cp instruction for invalidating
*            the whole D-cache. This function invalidates each line by
*            set/way.
*
****************************************************************************/
void Xil_L1DCacheInvalidate(void)
{
    register u32 CsidReg, C7Reg;
    u32 CacheSize, LineSize, NumWays;
    u32 Way, WayIndex, Set, SetIndex, NumSet;
    u32 currmask;

#ifdef __GNUC__
    u32 stack_start,stack_end,stack_size;
    register u32 CtrlReg;
#endif

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

#ifdef __GNUC__
    stack_end = (u32)&_stack_end;
    stack_start = (u32)&__undef_stack;
    stack_size=stack_start-stack_end;

    /* Check for the cache status. If cache is enabled, then only
     * flush stack memory to save return address. If cache is disabled,
     * dont flush anything as it might result in flushing stale date into
     * memory which is undesirable.
     * */
    CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
    if ((CtrlReg & (XREG_CP15_CONTROL_C_BIT)) != 0U) {
        Xil_DCacheFlushRange(stack_end, stack_size);
    }
#endif

    /* Select cache level 0 and D cache in CSSR */
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);

#ifdef __GNUC__
    CsidReg = mfcp(XREG_CP15_CACHE_SIZE_ID);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_CACHE_SIZE_ID, CsidReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_CACHE_SIZE_ID);
      CsidReg = Reg; }
#endif
    /* Determine Cache Size */
    CacheSize = (CsidReg >> 13U) & 0x1FFU;
    CacheSize +=1U;
    CacheSize *=128U;    /* to get number of bytes */

    /* Number of Ways */
    NumWays = (CsidReg & 0x3ffU) >> 3U;
    NumWays += 1U;

    /* Get the cacheline size, way size, index size from csidr */
    LineSize = (CsidReg & 0x07U) + 4U;

    NumSet = CacheSize/NumWays;
    NumSet /= (0x00000001U << LineSize);

    Way = 0U;
    Set = 0U;

    /* Invalidate all the cachelines */
    for (WayIndex =0U; WayIndex < NumWays; WayIndex++) {
        for (SetIndex =0U; SetIndex < NumSet; SetIndex++) {
            C7Reg = Way | Set;

        /* Invalidate by Set/Way */
#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_inval_dc_line_sw(C7Reg);
#else
            /*mtcp(XREG_CP15_INVAL_DC_LINE_SW, C7Reg), */
            { volatile register u32 Reg
                __asm(XREG_CP15_INVAL_DC_LINE_SW);
              Reg = C7Reg; }
#endif
            Set += (0x00000001U << LineSize);
        }
        Set=0U;
        Way += 0x40000000U;
    }

    /* Wait for L1 invalidate to complete */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Invalidate a level 1 Data cache line. If the byte specified by the
*             address (Addr) is cached by the Data cache, the cacheline
*             containing that byte is invalidated. If the cacheline is modified
*             (dirty), the modified contents are lost and are NOT written to
*            system memory before the line is invalidated.
*
* @param    adr: 32bit address of the data to be invalidated.
*
* @return    None.
*
* @note        The bottom 5 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L1DCacheInvalidateLine(u32 adr)
{
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);
    mtcp(XREG_CP15_INVAL_DC_LINE_MVA_POC, (adr & (~0x1FU)));

    /* Wait for L1 invalidate to complete */
    dsb();
}

/****************************************************************************/
/**
* @brief    Invalidate the level 1 Data cache for the given address range.
*             If the bytes specified by the address range are cached by the Data
*             cache, the cachelines containing those bytes are invalidated. If the
*             cachelines are modified (dirty), the modified contents are lost and
*             NOT written to the system memory before the lines are invalidated.
*
* @param    adr: 32bit start address of the range to be invalidated.
* @param    len: Length of the range to be invalidated in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1DCacheInvalidateRange(u32 adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Select cache L0 D-cache in CSSR */
        mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);

        while (LocalAddr < end) {

#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_inval_dc_line_mva_poc(LocalAddr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_INVAL_DC_LINE_MVA_POC);
              Reg = LocalAddr; }
#endif
            LocalAddr += cacheline;
        }
    }

    /* Wait for L1 invalidate to complete */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Flush the level 1 Data cache.
*
* @param    None.
*
* @return    None.
*
* @note        In Cortex A9, there is no cp instruction for flushing
*            the whole D-cache. Need to flush each line.
*
****************************************************************************/
void Xil_L1DCacheFlush(void)
{
    register u32 CsidReg, C7Reg;
    u32 CacheSize, LineSize, NumWays;
    u32 Way;
    u32 WayIndex, Set, SetIndex, NumSet;
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    /* Select cache level 0 and D cache in CSSR */
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 0);

#ifdef __GNUC__
    CsidReg = mfcp(XREG_CP15_CACHE_SIZE_ID);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_CACHE_SIZE_ID, CsidReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_CACHE_SIZE_ID);
      CsidReg = Reg; }
#endif

    /* Determine Cache Size */

    CacheSize = (CsidReg >> 13U) & 0x1FFU;
    CacheSize +=1U;
    CacheSize *=128U;    /* to get number of bytes */

    /* Number of Ways */
    NumWays = (CsidReg & 0x3ffU) >> 3U;
    NumWays += 1U;

    /* Get the cacheline size, way size, index size from csidr */
    LineSize = (CsidReg & 0x07U) + 4U;

    NumSet = CacheSize/NumWays;
    NumSet /= (0x00000001U << LineSize);

    Way = 0U;
    Set = 0U;

    /* Invalidate all the cachelines */
    for (WayIndex =0U; WayIndex < NumWays; WayIndex++) {
        for (SetIndex =0U; SetIndex < NumSet; SetIndex++) {
            C7Reg = Way | Set;
            /* Flush by Set/Way */

#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_clean_inval_dc_line_sw(C7Reg);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_CLEAN_INVAL_DC_LINE_SW);
              Reg = C7Reg; }
#endif
            Set += (0x00000001U << LineSize);
        }
        Set = 0U;
        Way += 0x40000000U;
    }

    /* Wait for L1 flush to complete */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Flush a level 1 Data cache line. If the byte specified by the
*            address (adr) is cached by the Data cache, the cacheline containing
*            that byte is invalidated. If the cacheline is modified (dirty), the
*             entire contents of the cacheline are written to system memory
*            before the line is invalidated.
*
* @param    adr: 32bit address of the data to be flushed.
*
* @return    None.
*
* @note        The bottom 5 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L1DCacheFlushLine(u32 adr)
{
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);
    mtcp(XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC, (adr & (~0x1FU)));

    /* Wait for L1 flush to complete */
    dsb();
}

/****************************************************************************/
/**
* @brief    Flush the level 1  Data cache for the given address range.
*             If the bytes specified by the address range are cached by the Data
*             cache, the cacheline containing those bytes are invalidated. If the
*             cachelines are modified (dirty), they are written to system memory
*             before the lines are invalidated.
*
* @param    adr: 32bit start address of the range to be flushed.
* @param    len: Length of the range to be flushed in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1DCacheFlushRange(u32 adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Select cache L0 D-cache in CSSR */
        mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);

        while (LocalAddr < end) {

#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_clean_inval_dc_line_mva_poc(LocalAddr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_CLEAN_INVAL_DC_LINE_MVA_POC);
              Reg = LocalAddr; }
#endif
            LocalAddr += cacheline;
        }
    }

    /* Wait for L1 flush to complete */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Store a level 1  Data cache line. If the byte specified by the
*             address (adr) is cached by the Data cache and the cacheline is
*             modified (dirty), the entire contents of the cacheline are written
*             to system memory. After the store completes, the cacheline is
*            marked as unmodified (not dirty).
*
* @param    Address to be stored.
*
* @return    None.
*
* @note        The bottom 5 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L1DCacheStoreLine(u32 adr)
{
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 0U);
    mtcp(XREG_CP15_CLEAN_DC_LINE_MVA_POC, (adr & (~0x1FU)));

    /* Wait for L1 store to complete */
    dsb();
}


/****************************************************************************/
/**
* @brief    Enable the level 1 instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1ICacheEnable(void)
{
    register u32 CtrlReg;

    /* enable caches only if they are disabled */
#ifdef __GNUC__
    CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_SYS_CONTROL);
      CtrlReg = Reg; }
#endif
    if ((CtrlReg & (XREG_CP15_CONTROL_I_BIT)) != 0U) {
        return;
    }

    /* invalidate the instruction cache */
    mtcp(XREG_CP15_INVAL_IC_POU, 0U);

    /* enable the instruction cache */
    CtrlReg |= (XREG_CP15_CONTROL_I_BIT);

    mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}

/****************************************************************************/
/**
* @brief    Disable level 1 the instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1ICacheDisable(void)
{
    register u32 CtrlReg;

    dsb();

    /* invalidate the instruction cache */
    mtcp(XREG_CP15_INVAL_IC_POU, 0U);

    /* disable the instruction cache */
#ifdef __GNUC__
    CtrlReg = mfcp(XREG_CP15_SYS_CONTROL);
#elif defined (__ICCARM__)
    mfcp(XREG_CP15_SYS_CONTROL, CtrlReg);
#else
    { volatile register u32 Reg __asm(XREG_CP15_SYS_CONTROL);
      CtrlReg = Reg; }
#endif
    CtrlReg &= ~(XREG_CP15_CONTROL_I_BIT);

    mtcp(XREG_CP15_SYS_CONTROL, CtrlReg);
}

/****************************************************************************/
/**
* @brief    Invalidate the entire level 1 instruction cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1ICacheInvalidate(void)
{
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 1U);
    /* invalidate the instruction cache */
    mtcp(XREG_CP15_INVAL_IC_POU, 0U);

    /* Wait for L1 invalidate to complete */
    dsb();
}

/****************************************************************************/
/**
* @brief    Invalidate a level 1  instruction cache line. If the instruction
*            specified by the address is cached by the instruction cache, the
*            cacheline containing that instruction is invalidated.
*
* @param    adr: 32bit address of the instruction to be invalidated.
*
* @return    None.
*
* @note        The bottom 5 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L1ICacheInvalidateLine(u32 adr)
{
    mtcp(XREG_CP15_CACHE_SIZE_SEL, 1U);
    mtcp(XREG_CP15_INVAL_IC_LINE_MVA_POU, (adr & (~0x1FU)));

    /* Wait for L1 invalidate to complete */
    dsb();
}

/****************************************************************************/
/**
* @brief    Invalidate the level 1 instruction cache for the given address
*             range. If the instrucions specified by the address range are cached
*            by the instruction cache, the cacheline containing those bytes are
*            invalidated.
*
* @param    adr: 32bit start address of the range to be invalidated.
* @param    len: Length of the range to be invalidated in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L1ICacheInvalidateRange(u32 adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Select cache L0 I-cache in CSSR */
        mtcp(XREG_CP15_CACHE_SIZE_SEL, 1U);

        while (LocalAddr < end) {

#if defined (__GNUC__) || defined (__ICCARM__)
            asm_cp15_inval_ic_line_mva_pou(LocalAddr);
#else
            { volatile register u32 Reg
                __asm(XREG_CP15_INVAL_IC_LINE_MVA_POU);
              Reg = LocalAddr; }
#endif
            LocalAddr += cacheline;
        }
    }

    /* Wait for L1 invalidate to complete */
    dsb();
    mtcpsr(currmask);
}

#ifndef USE_AMP
/****************************************************************************/
/**
* @brief    Enable the L2 cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheEnable(void)
{
    register u32 L2CCReg;

    L2CCReg = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET);

    /* only enable if L2CC is currently disabled */
    if ((L2CCReg & 0x01U) == 0U) {
        /* set up the way size and latencies */
        L2CCReg = Xil_In32(XPS_L2CC_BASEADDR +
                   XPS_L2CC_AUX_CNTRL_OFFSET);
        L2CCReg &= XPS_L2CC_AUX_REG_ZERO_MASK;
        L2CCReg |= XPS_L2CC_AUX_REG_DEFAULT_MASK;
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_AUX_CNTRL_OFFSET,
              L2CCReg);
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_TAG_RAM_CNTRL_OFFSET,
              XPS_L2CC_TAG_RAM_DEFAULT_MASK);
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_DATA_RAM_CNTRL_OFFSET,
              XPS_L2CC_DATA_RAM_DEFAULT_MASK);

        /* Clear the pending interrupts */
        L2CCReg = Xil_In32(XPS_L2CC_BASEADDR +
                   XPS_L2CC_ISR_OFFSET);
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_IAR_OFFSET, L2CCReg);

        Xil_L2CacheInvalidate();
        /* Enable the L2CC */
        L2CCReg = Xil_In32(XPS_L2CC_BASEADDR +
                   XPS_L2CC_CNTRL_OFFSET);
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET,
              (L2CCReg | (0x01U)));

        Xil_L2CacheSync();
        /* synchronize the processor */
        dsb();

    }
}

/****************************************************************************/
/**
* @brief    Disable the L2 cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheDisable(void)
{
    register u32 L2CCReg;

    L2CCReg = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET);

    if((L2CCReg & 0x1U) != 0U) {

        /* Clean and Invalidate L2 Cache */
        Xil_L2CacheFlush();

        /* Disable the L2CC */
    L2CCReg = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET);
        Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET,
              (L2CCReg & (~0x01U)));
        /* Wait for the cache operations to complete */

        dsb();
    }
}

/*****************************************************************************/
/**
* @brief    Invalidate the entire level 2 cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheInvalidate(void)
{
    #ifdef __GNUC__
    u32 stack_start,stack_end,stack_size;
    register u32 L2CCReg;
    stack_end = (u32)&_stack_end;
    stack_start = (u32)&__undef_stack;
    stack_size=stack_start-stack_end;

    /* Check for the cache status. If cache is enabled, then only
     * flush stack memory to save return address. If cache is disabled,
     * dont flush anything as it might result in flushing stale date into
     * memory which is undesirable.
     */
    L2CCReg = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CNTRL_OFFSET);
    if ((L2CCReg & 0x01U) != 0U) {
    /*Flush stack memory to save return address*/
        Xil_DCacheFlushRange(stack_end, stack_size);
    }

    #endif
    u32 ResultDCache;
    /* Invalidate the caches */
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INVLD_WAY_OFFSET,
          0x0000FFFFU);
    ResultDCache = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INVLD_WAY_OFFSET)
                            & 0x0000FFFFU;
    while(ResultDCache != (u32)0U) {
        ResultDCache = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INVLD_WAY_OFFSET)
                            & 0x0000FFFFU;
    }

    /* Wait for the invalidate to complete */
    Xil_L2CacheSync();

    /* synchronize the processor */
    dsb();
}

/*****************************************************************************/
/**
* @brief    Invalidate a level 2 cache line. If the byte specified by the
*            address (adr) is cached by the Data cache, the cacheline containing
*            that byte is invalidated. If the cacheline is modified (dirty),
*            the modified contents are lost and are NOT written to system memory
*            before the line is invalidated.
*
* @param    adr: 32bit address of the data/instruction to be invalidated.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L2CacheInvalidateLine(u32 adr)
{
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INVLD_PA_OFFSET, (u32)adr);
    /* synchronize the processor */
    dsb();
}

/****************************************************************************/
/**
* @brief    Invalidate the level 2 cache for the given address range.
*             If the bytes specified by the address range are cached by the L2
*             cache, the cacheline containing those bytes are invalidated. If the
*             cachelines are modified (dirty), the modified contents are lost and
*             are NOT written to system memory before the lines are invalidated.
*
* @param    adr: 32bit start address of the range to be invalidated.
* @param    len: Length of the range to be invalidated in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheInvalidateRange(u32 adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    volatile u32 *L2CCOffset = (volatile u32 *)(XPS_L2CC_BASEADDR +
                    XPS_L2CC_CACHE_INVLD_PA_OFFSET);

    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);

    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Disable Write-back and line fills */
        Xil_L2WriteDebugCtrl(0x3U);

        while (LocalAddr < end) {
            *L2CCOffset = LocalAddr;
            Xil_L2CacheSync();
            LocalAddr += cacheline;
        }

        /* Enable Write-back and line fills */
        Xil_L2WriteDebugCtrl(0x0U);
    }

    /* synchronize the processor */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Flush the entire level 2 cache.
*
* @param    None.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheFlush(void)
{
    u32 ResultL2Cache;

    /* Flush the caches */

    /* Disable Write-back and line fills */
    Xil_L2WriteDebugCtrl(0x3U);

    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INV_CLN_WAY_OFFSET,
          0x0000FFFFU);
    ResultL2Cache = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INV_CLN_WAY_OFFSET)
                            & 0x0000FFFFU;

    while(ResultL2Cache != (u32)0U) {
        ResultL2Cache = Xil_In32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INV_CLN_WAY_OFFSET)
                                    & 0x0000FFFFU;
    }

    Xil_L2CacheSync();
    /* Enable Write-back and line fills */
    Xil_L2WriteDebugCtrl(0x0U);

    /* synchronize the processor */
    dsb();
}

/****************************************************************************/
/**
* @brief    Flush a level 2 cache line. If the byte specified by the address
*             (adr) is cached by the L2 cache, the cacheline containing that
*             byte is invalidated. If the cacheline is modified (dirty), the
*             entire contents of the cacheline are written to system memory
*             before the line is invalidated.
*
* @param    adr: 32bit address of the data/instruction to be flushed.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L2CacheFlushLine(u32 adr)
{
#ifdef CONFIG_PL310_ERRATA_588369
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_CLEAN_PA_OFFSET, adr);
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INVLD_PA_OFFSET, adr);
#else
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_INV_CLN_PA_OFFSET, adr);
#endif
    /* synchronize the processor */
    dsb();
}

/****************************************************************************/
/**
* @brief    Flush the level 2 cache for the given address range.
*             If the bytes specified by the address range are cached by the L2
*             cache, the cacheline containing those bytes are invalidated. If the
*             cachelines are modified (dirty), they are written to the system
*             memory before the lines are invalidated.
*
* @param    adr: 32bit start address of the range to be flushed.
* @param    len: Length of the range to be flushed in bytes.
*
* @return    None.
*
* @note        None.
*
****************************************************************************/
void Xil_L2CacheFlushRange(u32 adr, u32 len)
{
    u32 LocalAddr = adr;
    const u32 cacheline = 32U;
    u32 end;
    volatile u32 *L2CCOffset = (volatile u32 *)(XPS_L2CC_BASEADDR +
                    XPS_L2CC_CACHE_INV_CLN_PA_OFFSET);

    u32 currmask;

    currmask = mfcpsr();
    mtcpsr(currmask | IRQ_FIQ_MASK);
    if (len != 0U) {
        /* Back the starting address up to the start of a cache line
         * perform cache operations until adr+len
         */
        end = LocalAddr + len;
        LocalAddr = LocalAddr & ~(cacheline - 1U);

        /* Disable Write-back and line fills */
        Xil_L2WriteDebugCtrl(0x3U);

        while (LocalAddr < end) {
            *L2CCOffset = LocalAddr;
            Xil_L2CacheSync();
            LocalAddr += cacheline;
        }

        /* Enable Write-back and line fills */
        Xil_L2WriteDebugCtrl(0x0U);
    }
    /* synchronize the processor */
    dsb();
    mtcpsr(currmask);
}

/****************************************************************************/
/**
* @brief    Store a level 2 cache line. If the byte specified by the address
*             (adr) is cached by the L2 cache and the cacheline is modified
*             (dirty), the entire contents of the cacheline are written to
*            system memory. After the store completes, the cacheline is marked
*            as unmodified (not dirty).
*
* @param    adr: 32bit address of the data/instruction to be stored.
*
* @return    None.
*
* @note        The bottom 4 bits are set to 0, forced by architecture.
*
****************************************************************************/
void Xil_L2CacheStoreLine(u32 adr)
{
    Xil_Out32(XPS_L2CC_BASEADDR + XPS_L2CC_CACHE_CLEAN_PA_OFFSET, adr);
    /* synchronize the processor */
    dsb();
}
#endif

 

ARM Cache Invalidate Flush

上一篇:免费领:2020年Linux云计算运维工程师视频教程


下一篇:在Linux中正确使用nohup