Description
DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用。
DZY喜欢在地里散步。他总是从任意一个格点出发,沿着格线行走直到回到出发点,且在行走途中不允许与已走过的路线有任何相交或触碰(出发点除外)。记这条封闭路线内部的格子总价值为V,路线上的费用总和为C,DZY想知道V/C的最大值是多少。
Input
第一行为两个正整数n,m。
接下来n行,每行m个非负整数,表示对应格子的价值。
接下来n+1行,每行m个正整数,表示所有横向的格线上的费用。
接下来n行,每行m+1个正整数,表示所有纵向的格线上的费用。
(所有数据均按从左到右,从上到下的顺序输入,参见样例和配图)
Output
输出一行仅含一个数,表示最大的V/C,保留3位小数。
Sample Input
3 4
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89
Sample Output
1.286
HINT
题解:
0/1分数规划,二分mid
转化为是否存在一组解
使得∑vi-mid*∑ci<=0
即,每个格线有一个边权,每个格有权,是否能找到一个封闭的图形,使得内部和-边权和>0
发现和一般的不同的是,每个元素不是可以直接访问然后取值的。
因为还有格线和封闭起来的块的问题。
假设先不管块的值。
我们发现题目是一个从某个点出发,再回到某个点,然后判断是否有一条>0的路径。
即,图中有没有正环。
那么,块的值怎么办?
可以前缀差分!!
sum[i][j]表示,∑val[1~i][j]
对于一个横边:(i,j)->(i,j+1),边权是:mid*c+sum[i][j]
(i,j)->(i,j-1),边权是:mid*c-sum[i][j]
竖边就是mid*c
那么对于一个闭合封闭图形,必然可以把块的贡献看作是一列一列的。
并且,如果这是一个正环,那么存在从左下角出发往右走再绕回来,然后边权之和恰好有∑sum[i][j]-sum[i-p][j]
就差分出来格内部的权值和了。
注意,最短路的时候,为了卡精度,但是赋值时不能dis[dx][dy]=dis[x][y]+w-eps或者+eps
eps只在比较的时候用,赋值就不能用了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
const double eps=0.000001;
int n,m;
int val[N][N];
int sum[N][N];
int mv[][]={{+,},{-,},{,+},{,-}};
int co[N][N][];
double dis[N][N];
bool vis[N][N];
int in[N][N];//ci in queue
struct node{
int has,x,y;
};
queue<node>q;
double mid;
bool spfa(){
while(!q.empty()) q.pop();
node st;
st.has=,st.x=,st.y=;
dis[][]=0.00;
q.push(st);
while(!q.empty()){
node now=q.front();q.pop();
vis[now.x][now.y]=;
if(now.has>(n+)*(m+)+) return true;
for(int i=;i<;i++){
int dx=now.x+mv[i][],dy=now.y+mv[i][];
if(dx<||dx>n) continue;
if(dy<||dy>m) continue;
double w=-1.0*mid*co[now.x][now.y][i];
if(i==) w+=sum[now.x][now.y+];
if(i==) w-=sum[now.x][now.y];
if(dis[dx][dy]+0.0001<dis[now.x][now.y]+w){
dis[dx][dy]=dis[now.x][now.y]+w;
in[dx][dy]++;
if(in[dx][dy]>(n+)*(m+)+) return true;
if(!vis[dx][dy]){
vis[dx][dy]=;
node tmp;
tmp.has=now.has+;
tmp.x=dx,tmp.y=dy;
q.push(tmp);
}
}
}
}
return false;
}
bool che(){
memset(dis,0xcf,sizeof dis);
memset(in,,sizeof in);
memset(vis,,sizeof vis);
if(spfa()) return true;
}
int main(){
scanf("%d%d",&n,&m);
int mx=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&val[i][j]);
mx+=val[i][j];
sum[i][j]=sum[i-][j]+val[i][j];
}
}int t;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&t);
co[i][j-][]=co[i][j][]=t;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&t);
co[i-][j][]=co[i][j][]=t;
}
}
double l=0.00,r=1.0*mx;
double ans;
while(r-l>eps){
mid=(l+r)/2.0;
if(che()) l=mid,ans=mid;
else r=mid;
}
printf("%.3lf",ans);
return ;
}