题面
Time limit per test: 2 seconds
Memory limit per test: 256 megabytes
Description
You are given a regular polygon with 2⋅n vertices (it's convex and has equal sides and equal angles) and all its sides have length 1. Let's name it as 2n-gon.
Your task is to find the square of the minimum size such that you can embed 2n-gon in the square. Embedding 2n-gon in the square means that you need to place 2n-gon in the square in such way that each point which lies inside or on a border of 2n-gon should also lie inside or on a border of the square.
You can rotate 2n-gon and/or the square.
Input
The first line contains a single integer T (1≤T≤200) — the number of test cases.
Next T lines contain descriptions of test cases — one per line. Each line contains single odd integer n (3≤n≤199). Don't forget you need to embed 2n-gon, not an n-gon.
Output
Print T real numbers — one per test case. For each test case, print the minimum length of a side of the square 2n-gon can be embedded in. Your answer will be considered correct if its absolute or relative error doesn't exceed 10−6.
Example
input
3
3
5
199
output
1.931851653
3.196226611
126.687663595
题意
给定一个边长为 1 的正 2n 边形
求外接正方形的最小面积
解题思路
因为本题给定的 n 是奇数
又因为外接正方形要求面积最小
所以不会有边与正方形重合,只存在四个点会位于外接正方形的四条边上
以正十边形为例
外接正方形的作图方法为
选择一对 连线能够通过正十边形中心点 的点对,连接两点,并向两端延长
然后从正十边形中心点开始作垂直于前面那条边的边,并向两端延长
然后以这两条线为准作一个斜45°正方形
为将正方形缩小到最小,所以要保证正十边形上有点会落在正方形上
故作出来的图如上图所示
只看其四分之一部分
首先可以通过 360°/(2*n) 来求出每份角的角度 ang
因为边长为 1 ,所以可以通过一个顶角为 ang ,底边为 1 的等腰三角形来求出腰长 x = 0.5/sin(ang/2)
因为总共有 10 个角,所以在四分之一图中平均有 10/4 = 2.5个角
因为这些正多边形都是凸多边形,所以与正方形的交点一定是最接近于中间位置的那个点
所以实际的 θ = round(2.5/2)*ang
公式里表示为 ang2 = round(n/4)*ang
对于ans1,根据正弦定理
可以得到 ans1 / sinθ = x / sin45°
得到 ans1 = x / sin45° * sinθ
对于ans2,根据正弦定理
可以得到 ans2 / sin(90°-θ) = x / sin45°
得到 ans2 = x / sin45° * sin(90°-θ)
相加即为正方形边长
完整程序
#include<bits/stdc++.h>
using namespace std;
const double PI=acos(-1.0);
const double epsilon=PI/180.0; //角度转弧度
void solve()
{
int n;
cin>>n;
double ang=180.0/n;
double ang2=round(n/4.0)*ang;
double x=1.0/(2.0*sin(ang/2.0*epsilon));
double ans1=x/sin(45.0*epsilon)*sin(ang2*epsilon);
double ans2=x/sin(45.0*epsilon)*sin((90.0-ang2)*epsilon);
cout<<fixed<<setprecision(9)<<ans1+ans2<<'\n';
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int T;cin>>T;
while(T--)
solve();
return 0;
}