大数据平台建设 —— SQL查询引擎之Presto

大数据查询引擎Presto简介

SQL on Hadoop:

  • Hive的出现让技术人员可以通过类SQL的方式对批量数据进行查询,而不用开发MapReduce程序
  • MapReduce计算过程中大量的中间结果磁盘落地使运行效率较低
  • 为了提高SQL on Hadoop的效率,各大工具应运而生,比如Shark、Impala等

SQL on Hadoop的常见工具:
大数据平台建设 —— SQL查询引擎之Presto

Presto是什么:

  • Presto是由Facebook开发的分布式SQL查询引擎,用来进行高速实时的数据分析
  • Presto的产生是为了解决Hive的MapReduce模型太慢且不能通过BI等工具展现HDFS数据的问题
  • Presto是一个计算引擎,它不存储数据,通过丰富的Connector获取第三方服务的数据,并支持扩展

Presto显而易见的优点:

  • Presto支持标准的SQL,降低了分析人员和开发人员的使用门槛
  • Presto支持可插拔的Connector,可以连接多种数据源。包括HiveRDBMS、Kafka、 MongoDB等等
  • Presto是一个低延时、高并发的内存计算引擎,比Hive执行效率高的多

Presto数据模型:

  • Catalog:即数据源。Hive、 Mysq|都 是数据源。Presto可 以连接多个Hive和多个Mysql。
  • Schema:类比于DataBase,一个Catalog下有多个Schema
  • Table:数据表,与我们常用的数据库表意义相同,一个Schema下有多个数据表

Presto架构与执行流程

Presto架构图:
大数据平台建设 —— SQL查询引擎之Presto

Presto为Master - Slave架构,由三部分组成:

  • 一个Coordinator节点
  • 一个Discovery Server节点
  • 多个Worker节点

Presto组件:

  • Coordinator负责解析SQL语句,生成查询计划,分发执行任务
  • Discovery Server负责维护Coordinator和Worker的关系,通常内嵌于Coordinator节点
  • Worker节点负责执行查询任务以及与HDFS进行交互读取数据

Presto查询流程:
大数据平台建设 —— SQL查询引擎之Presto

Presto的一些名词:

  • Plan:Presto将需要执行的SQL进行解析,生成执行计划
  • Stage:Presto执行计划分 为多个Stage,比如读取数据、聚合数据等
  • Exchange:用于连接不同的Stage,进行数据交互
  • Task:Stage由多个Task组成,每个Task分配到 一个Worker执行
  • Split:一个分片表示大的数据集合中的一个小子集,与MapReduce类似
  • Page:Presto 中处理的最小数据单元

关于数据库架构设计:

  • Shared Everthting:完全透明共享CPU/MEMORY/IO,并行处理能力是最差的
  • Shared Storage:各个处理单元使用自己的私有CPU和Memory,共享磁盘系统
  • Shared Nothing:各个处理单元都有自己私有的CPU/内存/硬盘等

Presto属于MPP架构设计:
大数据平台建设 —— SQL查询引擎之Presto

MPP架构的优缺点

  • 易扩容:可轻松通过扩展机器节点(处理单元)扩展整个系统的分布式存储和计算能力
  • 效率高:任务并行执行能力强,充分发挥本地计算的能力,数据无共享、无I/O冲突,无锁资源竞争,计算速度快
  • 短板效应:单个节点查询效率慢会影响整个查询

Presto安装部署

官方文档:

Presto的安装方式有两种,一是到官网下载编译好的二进制包进行安装,二是从Github仓库上拉取源码进行编译安装。为了简单起见,我这里选择第一种方式,Server和Client都需要下载。

将下载的安装包上传到服务器上:

[root@hadoop ~]# cd /usr/local/src
[root@hadoop /usr/local/src]# ls
presto-server-0.243.2.tar.gz    presto-cli-0.243.2-executable.jar
[root@hadoop /usr/local/src]# 

解压presto-server安装包,并移动到合适的目录下:

[root@hadoop /usr/local/src]# tar -zxvf presto-server-0.243.2.tar.gz
[root@hadoop /usr/local/src]# mv presto-server-0.243.2 /usr/local/presto-server
[root@hadoop /usr/local/src]# cd /usr/local/presto-server/
[root@hadoop /usr/local/presto-server]# ls
bin  lib  NOTICE  plugin  README.txt
[root@hadoop /usr/local/presto-server]# 

配置presto-server:

[root@hadoop /usr/local/presto-server]# mkdir etc
[root@hadoop /usr/local/presto-server]# vim etc/config.properties
# 作为coordinator节点
coordinator=true
# 指定即是coordinator也是work节点
node-scheduler.include-coordinator=true
http-server.http.port=9090
# 是否使用内嵌的discovery-server
discovery-server.enabled=true
discovery.uri=http://192.168.243.161:9090

[root@hadoop /usr/local/presto-server]# vim etc/node.properties  # 每个节点的特殊配置
# presto集群的名称
node.environment=presto_dev
# 当前节点的id
node.id=ffffffff-ffff-ffff-ffff-ffffffffff01
# 节点的数据存储目录
node.data-dir=/data/presto

[root@hadoop /usr/local/presto-server]# vim etc/jvm.config  # JVM相关配置
-server
-Xmx8G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError

[root@hadoop /usr/local/presto-server]# vim etc/log.properties   # 日志相关配置
com.facebook.presto=INFO

配置catalog的连接信息:

[root@hadoop /usr/local/presto-server]# mkdir etc/catalog
[root@hadoop /usr/local/presto-server]# vim etc/catalog/jmx.properties
connector.name=jmx

[root@hadoop /usr/local/presto-server]# vim etc/catalog/hive.properties
connector.name=hive-hadoop2
hive.metastore.uri=thrift://192.168.243.161:9083
hive.config.resources=/usr/local/hadoop-2.8.5/etc/hadoop/hdfs-site.xml,/usr/local/hadoop-2.8.5/etc/hadoop/core-site.xml
hive.allow-drop-table=false

完成以上的配置后,启动presto-server:

[root@hadoop /usr/local/presto-server]# bin/launcher run
...

2020-11-16T16:55:35.776+0800    INFO    main    com.facebook.presto.server.PrestoServer ======== SERVER STARTED ========

以上这种启动方式是前台启动,后台启动的方式如下:

[root@hadoop /usr/local/presto-server]# bin/launcher start
Started as 5908
[root@hadoop /usr/local/presto-server]# 

检查presto-server进程是否正常:

[root@hadoop /usr/local/presto-server]# jps |grep -i presto
5908 PrestoServer
[root@hadoop /usr/local/presto-server]# netstat -lntp |grep 5908
tcp6       0      0 :::39225                :::*            LISTEN      5908/java           
tcp6       0      0 :::42622                :::*            LISTEN      5908/java           
tcp6       0      0 :::9090                 :::*            LISTEN      5908/java           
tcp6       0      0 :::36714                :::*            LISTEN      5908/java           
tcp6       0      0 :::45066                :::*            LISTEN      5908/java           
tcp6       0      0 :::32982                :::*            LISTEN      5908/java           
[root@hadoop /usr/local/presto-server]# 

将presto-client的jar包移动到bin目录下:

[root@hadoop /usr/local/presto-server]# mv /usr/local/src/presto-cli-0.243.2-executable.jar bin/presto-cli.jar
[root@hadoop /usr/local/presto-server]# chmod a+x bin/presto-cli.jar

使用presto-client连接presto-server,进入到交互式终端,测试下能否正常查询Hive中的数据:

[root@hadoop /usr/local/presto-server]# bin/presto-cli.jar --server localhost:9090 --catalog hive --user root
presto> show catalogs;
 Catalog 
---------
 hive    
 jmx     
 system  
(3 rows)

Query 20201116_091555_00001_cus94, FINISHED, 1 node
Splits: 19 total, 19 done (100.00%)
0:00 [0 rows, 0B] [0 rows/s, 0B/s]

presto> show schemas;
       Schema       
--------------------
 db01               
 default            
 information_schema 
(3 rows)

Query 20201116_091557_00002_cus94, FINISHED, 1 node
Splits: 19 total, 19 done (100.00%)
0:00 [3 rows, 44B] [16 rows/s, 243B/s]

presto> use db01;
USE
presto:db01> show tables;
  Table   
----------
 log_dev  
 log_dev2 
(2 rows)

Query 20201116_091652_00004_cus94, FINISHED, 1 node
Splits: 19 total, 19 done (100.00%)
0:00 [2 rows, 43B] [5 rows/s, 117B/s]

presto:db01> select * from log_dev;
 id |   name   | create_time | creator |      info      
----+----------+-------------+---------+----------------
  4 | 更新用户 |  1554189515 | yarn    | 更新用户 test3 
  6 | 创建用户 |  1554299345 | yarn    | 创建用户 test5 
(2 rows)

Query 20201116_091705_00005_cus94, FINISHED, 1 node
Splits: 17 total, 17 done (100.00%)
0:01 [2 rows, 84B] [2 rows/s, 84B/s]

presto:db01> 

presto-server提供了ui界面,可以在该界面上查看一些监控信息。使用浏览器访问9090端口:
大数据平台建设 —— SQL查询引擎之Presto

点击Query ID可以进入Query Detail页面查看该Query的详细信息:
大数据平台建设 —— SQL查询引擎之Presto

往下拉可以查看Stages和Task信息:
大数据平台建设 —— SQL查询引擎之Presto

点击“Live Plan”可以查看执行计划:
大数据平台建设 —— SQL查询引擎之Presto


通过Jdbc操作Presto

在上一小节中,简单演示了使用presto-client操作presto-server,本小节则演示下如何通过编写代码以JDBC的方式操作presto-server。首先,创建Maven项目,pom文件的内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>presto-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>com.facebook.presto</groupId>
            <artifactId>presto-jdbc</artifactId>
            <version>0.243.2</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

编写JDBC代码如下:

package com.example.presto.demo;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

/**
 * 使用JDBC操作Presto
 *
 * @author 01
 * @date 2020-11-16
 **/
public class JdbcTest {

    public static void main(String[] args) throws Exception {
        Class.forName("com.facebook.presto.jdbc.PrestoDriver");
        Connection connection = DriverManager.getConnection(
                "jdbc:presto://192.168.243.161:9090/hive/db01",
                "root", null
        );
        Statement statement = connection.createStatement();
        ResultSet resultSet = statement.executeQuery("select * from log_dev");
        while (resultSet.next()) {
            for (int i = 1; i <= resultSet.getMetaData().getColumnCount(); i++) {
                System.out.print(resultSet.getString(i) + "\t");
            }
            System.out.println();
        }
        resultSet.close();
        connection.close();
    }
}

执行结果如下:
大数据平台建设 —— SQL查询引擎之Presto


Presto UDF开发之Scalar函数

与Hive和Spark SQL一样,Presto也支持用户自定义函数(UDF)。Presto UDF:

  • 在Presto中,函数大体分为三种:scalar、aggregation和window
  • Scalar就是标量函数,简单来说就是Java中的一个静态方法,本身没有任何状态
  • Aggregation函数,就是需要累积状态的函数,例如COUNT、AVG等

Scalar函数的开发步骤:

  • 定义一个Java类,用@ScalarFunction注解标记实现业务逻辑的静态方法
  • 使用@Description描述函数的作用,这里的内容会在SHOW FUNCTIONS中显示
  • 使用@SqlType标记函数的返回值类型

pom文件中,添加如下依赖:

<dependency>
    <groupId>com.facebook.presto</groupId>
    <artifactId>presto-spi</artifactId>
    <version>0.243</version>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>21.0</version>
</dependency>

开发一个scalar类型函数,实现为字符串添加一个前缀,代码示例:

package com.example.presto.demo.udf;

import com.facebook.presto.common.type.StandardTypes;
import com.facebook.presto.spi.function.Description;
import com.facebook.presto.spi.function.ScalarFunction;
import com.facebook.presto.spi.function.SqlType;
import io.airlift.slice.Slice;
import io.airlift.slice.Slices;

public class PrefixFunction {

    /**
     * 为字符串添加一个前缀
     * presto中没有String类型,使用Slice代替
     */
    @ScalarFunction("Prefix")
    @Description("prefix string")
    @SqlType(StandardTypes.VARCHAR)
    public static Slice prefix(@SqlType(StandardTypes.VARCHAR) Slice value) {
        return Slices.utf8Slice("presto_udf_" + value.toStringUtf8());
    }
}

scalar类型函数支持传入多个值,例如可以实现一个根据传入的数据生成json字符串的函数,代码示例:

package com.example.presto.demo.udf;

import com.facebook.presto.common.type.StandardTypes;
import com.facebook.presto.spi.function.Description;
import com.facebook.presto.spi.function.ScalarFunction;
import com.facebook.presto.spi.function.SqlNullable;
import com.facebook.presto.spi.function.SqlType;
import io.airlift.slice.Slice;
import io.airlift.slice.Slices;

public class GenJson {

    /**
     * 根据传入的数据生成json字符串
     */
    @ScalarFunction("GenJson")
    @Description("gen json string")
    @SqlType(StandardTypes.VARCHAR)
    public static Slice genJson(@SqlType(StandardTypes.VARCHAR) Slice key,
                                @SqlType(StandardTypes.VARCHAR) Slice value) {
        return Slices.utf8Slice(
                String.format("{\"%s\":\"%s\"}", key.toStringUtf8(),
                        value == null ? "" : value.toStringUtf8())
        );
    }
}

编写一个Plugin的实现类,在getFunctions方法中添加我们开发的UDF函数。代码如下:

package com.example.presto.demo.udf;

import com.facebook.presto.spi.Plugin;
import com.google.common.collect.ImmutableSet;

import java.util.Set;

public class ExampleFunctionsPlugin implements Plugin {

    @Override
    public Set<Class<?>> getFunctions() {
        return ImmutableSet.<Class<?>>builder()
                .add(PrefixFunction.class)
                .add(GenJson.class)
                .build();
    }
}

最后还需要在项目的resources目录下创建如下目录文件:
大数据平台建设 —— SQL查询引擎之Presto

文件内容如下:

      com.example.presto.demo.udf.ExampleFunctionsPlugin

将项目编译并打包上传到服务器:

[root@hadoop ~/jars]# ls
presto-test-1.0-SNAPSHOT.jar
[root@hadoop ~/jars]# 

将jar包拷贝到presto-server的plugin目录下:

[root@hadoop ~]# mkdir /usr/local/presto-server/plugin/example-functions
[root@hadoop ~]# cp jars/presto-test-1.0-SNAPSHOT.jar /usr/local/presto-server/plugin/example-functions
[root@hadoop ~]# cp /usr/local/presto-server/plugin/hive-hadoop2/guava-26.0-jre.jar /usr/local/presto-server/plugin/example-functions  # 项目中依赖了guava,所以需要一并拷贝
[root@hadoop ~]# ls /usr/local/presto-server/plugin/example-functions
guava-26.0-jre.jar  presto-test-1.0-SNAPSHOT.jar

重启presto-server:

[root@hadoop ~]# /usr/local/presto-server/bin/launcher restart

使用presto-cli进入交互命令行,验证一下我们开发的UDF函数是否生效:

[root@hadoop /usr/local/presto-server]# bin/presto-cli.jar --server localhost:9090 --catalog hive --user root
presto> use db01;
USE
presto:db01> select Prefix(name) from log_dev;
        _col0        
---------------------
 presto_udf_更新用户 
 presto_udf_创建用户 
(2 rows)

Query 20201116_121815_00002_upy9p, FINISHED, 1 node
Splits: 17 total, 17 done (100.00%)
0:01 [2 rows, 84B] [1 rows/s, 63B/s]

presto:db01> select GenJson(creator, name) from log_dev;
        _col0        
---------------------
 {"yarn":"更新用户"} 
 {"yarn":"创建用户"} 
(2 rows)

Query 20201116_121905_00003_upy9p, FINISHED, 1 node
Splits: 17 total, 17 done (100.00%)
0:00 [2 rows, 84B] [8 rows/s, 336B/s]

presto:db01> 

Presto UDF开发之Aggregation函数

Aggregation函数中的几个概念:

  • input(state, data):针对每条数据,执行input函数,在每个有数据的节点都会执行,最终得到多个累积的状态数据
  • combine(state1, state2):将所有节点的状态数据聚合起来,直至所有状态数据被聚合成一个最终状态,即Aggregation函数的输出结果
  • output(final_state, out):最终输出结果到一个BlockBuilder

Aggregation函数的开发步骤:

  • 定义一个Java类,用@AggregationFunction标记为Aggregation函数
  • 使用@InputFunction@CombineFunction@OutputFunction分别标记计算函数、合并结果函数和最终输出函数
  • 实现相关函数逻辑

首先,定义一个接口,继承AccumulatorState,声明用于提供和获取值的方法:

package com.example.presto.demo.udf;

import com.facebook.presto.spi.function.AccumulatorState;
import io.airlift.slice.Slice;

public interface StringValueState extends AccumulatorState {
    Slice getStringValue();

    void setStringValue(Slice value);
}

然后定义一个Java类,实现Aggregation函数的核心逻辑:

package com.example.presto.demo.udf;

import com.facebook.presto.common.block.BlockBuilder;
import com.facebook.presto.common.type.StandardTypes;
import com.facebook.presto.common.type.VarcharType;
import com.facebook.presto.spi.function.*;
import io.airlift.slice.Slice;
import io.airlift.slice.Slices;

/**
 * Aggregation函数 - 实现字符串连接功能
 *
 * @author 01
 */
@AggregationFunction("ConcatStr")
public class ConCatFunction {

    @InputFunction
    public static void input(StringValueState state,
                             @SqlType(StandardTypes.VARCHAR) Slice value) {
        state.setStringValue(Slices.utf8Slice(
                checkNull(state.getStringValue()) + "|" +
                        value.toStringUtf8()
        ));
    }

    @CombineFunction
    public static void combine(StringValueState state,
                               StringValueState otherState) {
        state.setStringValue(Slices.utf8Slice(
                checkNull(state.getStringValue()) + "|" +
                        checkNull(otherState.getStringValue())
        ));
    }

    @OutputFunction(StandardTypes.VARCHAR)
    public static void output(StringValueState state,
                              BlockBuilder blockBuilder) {
        VarcharType.VARCHAR.writeSlice(blockBuilder, state.getStringValue());
    }

    private static String checkNull(Slice slice) {
        return slice == null ? "" : slice.toStringUtf8();
    }
}

然后还需要在ExampleFunctionsPlugin中添加该函数:

public class ExampleFunctionsPlugin implements Plugin {

    @Override
    public Set<Class<?>> getFunctions() {
        return ImmutableSet.<Class<?>>builder()
                ...
                .add(ConCatFunction.class)
                .build();
    }
}

将项目编译打包并上传到服务器:

[root@hadoop ~]# ls jars/
presto-test-1.0-SNAPSHOT.jar
[root@hadoop ~]# 

覆盖之前的jar包:

[root@hadoop ~]# cp jars/presto-test-1.0-SNAPSHOT.jar /usr/local/presto-server/plugin/example-functions/
cp:是否覆盖"/usr/local/presto-server/plugin/example-functions/presto-test-1.0-SNAPSHOT.jar"? yes
[root@hadoop ~]# 

重启presto-server:

[root@hadoop ~]# /usr/local/presto-server/bin/launcher restart

使用presto-cli进入交互命令行,验证一下我们开发的UDF函数是否生效:

[root@hadoop /usr/local/presto-server]# bin/presto-cli.jar --server localhost:9090 --catalog hive --user root
presto> use db01;
USE
presto:db01> select ConcatStr(creator) from log_dev2;
              _col0              
---------------------------------
 ||hdfs|yarn|hdfs|yarn|hdfs|yarn 
(1 row)

Query 20201116_124714_00001_inrgm, FINISHED, 1 node
Splits: 18 total, 18 done (100.00%)
0:01 [6 rows, 825B] [4 rows/s, 571B/s]

presto:db01> 

Presto EventListener开发

Event Listener是Presto提供的事件监听机制,我们可以通过开发自己的Event Listener来监听Presto中发生的一些事件,例如建立查询、查询成功/失败等事件。总体来说,Event Listener有点类似于Hive中的Hook。Presto提供了三种Event Listener:

  • Query Creation:Presto查询建立相关信息
  • Query completion:查询执行相关信息,包含成功查询的细节信息,失败查询的错误码等信息
  • Split completion:split执行信息,同理包含成功和失败的细节信息

Event Listener的开发步骤:

  • 实现Presto的EventListenerEventListenerFactory接口
  • 基于服务提供者接口(SPI)正确的打包我们的jar
  • 部署,放到Presto指定目录,修改配置文件并重启服务

接下来演示一下开发一个EventListener,实现监听事件并将事件信息写入日志文件。首先,编写EventListener的实现类,核心逻辑都在该类中。代码如下:

package com.example.presto.demo.eventlistener;

import com.facebook.presto.spi.eventlistener.EventListener;
import com.facebook.presto.spi.eventlistener.QueryCompletedEvent;
import com.facebook.presto.spi.eventlistener.QueryCreatedEvent;
import com.facebook.presto.spi.eventlistener.SplitCompletedEvent;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.time.Instant;
import java.util.Map;

public class QueryEventListener implements EventListener {

    private final String logPath;

    public QueryEventListener(Map<String, String> config) {
        logPath = config.get("log.path");
        System.out.println(logPath);
    }

    /**
     * 监听创建查询事件
     */
    @Override
    public void queryCreated(QueryCreatedEvent queryCreatedEvent) {
        String queryId = queryCreatedEvent.getMetadata().getQueryId();
        String query = queryCreatedEvent.getMetadata().getQuery();
        String user = queryCreatedEvent.getContext().getUser();
        String fileName = logPath + File.separator + queryId;
        File logFile = new File(fileName);
        if (!logFile.exists()) {
            try {
                boolean result = logFile.createNewFile();
                System.out.println(result);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        try (FileWriter fw = new FileWriter(fileName, true)) {
            fw.append(String.format("User:%s Id:%s Query:%s%n", user, queryId, query));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    /**
     * 监听查询完成事件
     */
    @Override
    public void queryCompleted(QueryCompletedEvent queryCompletedEvent) {
        String queryId = queryCompletedEvent.getMetadata().getQueryId();
        long createTime = queryCompletedEvent.getCreateTime().toEpochMilli();
        long endTime = queryCompletedEvent.getEndTime().toEpochMilli();
        long totalBytes = queryCompletedEvent.getStatistics().getTotalBytes();
        String queryState = queryCompletedEvent.getMetadata().getQueryState();

        queryCompletedEvent.getFailureInfo().ifPresent(queryFailureInfo -> {
            int errCode = queryFailureInfo.getErrorCode().getCode();
            String failureType = queryFailureInfo.getFailureType().orElse("").toUpperCase();
            String failureHost = queryFailureInfo.getFailureHost().orElse("");
            String failureMessage = queryFailureInfo.getFailureMessage().orElse("");
        });

        String fileName = logPath + File.separator + queryId;
        try (FileWriter fw = new FileWriter(fileName, true)) {
            fw.append(String.format("Id:%s StartTime:%s EndTime:%s State:%s%n",
                    queryId, createTime, endTime, queryState));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    /**
     * 监听split完成事件
     */
    @Override
    public void splitCompleted(SplitCompletedEvent splitCompletedEvent) {
        long createTime = splitCompletedEvent.getCreateTime().toEpochMilli();
        long endTime = splitCompletedEvent.getEndTime().orElse(Instant.MAX).toEpochMilli();
        String queryId = splitCompletedEvent.getQueryId();
        String stageId = splitCompletedEvent.getStageId();
        String taskId = splitCompletedEvent.getTaskId();

        String fileName = logPath + File.separator + queryId;
        try (FileWriter fw = new FileWriter(fileName, true)) {
            fw.append(String.format("Id:%s StartTime:%s EndTime:%s StageId:%s TaskId:%s%n",
                    queryId, createTime, endTime, stageId, taskId));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

然后编写一个工厂类实现EventListenerFactory接口,用于创建我们自定义的QueryEventListener

package com.example.presto.demo.eventlistener;

import com.facebook.presto.spi.eventlistener.EventListener;
import com.facebook.presto.spi.eventlistener.EventListenerFactory;

import java.util.Map;

public class QueryEventListenerFactory implements EventListenerFactory {

    @Override
    public String getName() {
        // EventListener的名称
        return "query-event-listener";
    }

    @Override
    public EventListener create(Map<String, String> config) {
        if (!config.containsKey("log.path")) {
            throw new RuntimeException("missing log.path conf");
        }
        return new QueryEventListener(config);
    }
}

编写Plugin的实现类,在getEventListenerFactories方法中添加我们自定义的EventListener创建工厂:

package com.example.presto.demo.eventlistener;

import com.facebook.presto.spi.Plugin;
import com.facebook.presto.spi.eventlistener.EventListenerFactory;

import java.util.Collections;

public class QueryEventPlugin implements Plugin {

    @Override
    public Iterable<EventListenerFactory> getEventListenerFactories() {
        QueryEventListenerFactory queryEventListenerFactory = new QueryEventListenerFactory();
        return Collections.singletonList(queryEventListenerFactory);
    }
}

最后还需要在com.facebook.presto.spi.Plugin文件中,添加QueryEventPlugin类的包路径:

      com.example.presto.demo.eventlistener.QueryEventPlugin

将项目编译打包并上传到服务器:

[root@hadoop ~]# ls jars/
presto-test-1.0-SNAPSHOT.jar
[root@hadoop ~]# 

将jar包拷贝到presto-server的plugin目录下:

[root@hadoop ~]# mkdir /usr/local/presto-server/plugin/event-listener
[root@hadoop ~]# cp jars/presto-test-1.0-SNAPSHOT.jar /usr/local/presto-server/plugin/event-listener
[root@hadoop ~]# cp /usr/local/presto-server/plugin/hive-hadoop2/guava-26.0-jre.jar /usr/local/presto-server/plugin/event-listener  # 项目中依赖了guava,所以需要一并拷贝
[root@hadoop ~]# ls /usr/local/presto-server/plugin/event-listener
guava-26.0-jre.jar  presto-test-1.0-SNAPSHOT.jar

删除example-functions目录,否则会在启动presto-server时因为重复注册UDF而报错:

[root@hadoop ~]# rm -rf /usr/local/presto-server/plugin/example-functions/

然后还需要配置一下presto的event-listener:

[root@hadoop ~]# vim /usr/local/presto-server/etc/event-listener.properties
event-listener.name=query-event-listener
log.path=/data/presto/log
[root@hadoop ~]# mkdir -p /data/presto/log

重启presto-server:

[root@hadoop ~]# /usr/local/presto-server/bin/launcher restart

使用presto-cli进入交互命令行,随便执行一些查询语句:

[root@hadoop /usr/local/presto-server]# bin/presto-cli.jar --server localhost:9090 --catalog hive --user root
presto> use db01;
USE
presto:db01> select * from log_dev;
 id |   name   | create_time | creator |      info      
----+----------+-------------+---------+----------------
  4 | 更新用户 |  1554189515 | yarn    | 更新用户 test3 
  6 | 创建用户 |  1554299345 | yarn    | 创建用户 test5 
(2 rows)

Query 20201116_132643_00001_tvyva, FINISHED, 1 node
Splits: 17 total, 17 done (100.00%)
0:01 [2 rows, 84B] [1 rows/s, 58B/s]

presto:db01> select * from log_dev2 limit 1;
 id |   name   | create_time | creator |     info      
----+----------+-------------+---------+---------------
  1 | 创建用户 |  1554099545 | hdfs    | 创建用户 test 
(1 row)

Query 20201116_132652_00002_tvyva, FINISHED, 1 node
Splits: 18 total, 18 done (100.00%)
0:00 [1 rows, 825B] [3 rows/s, 2.48KB/s]

presto:db01> 

然后验证一下我们开发的EventListener是否生效,查看是否有记录相应的事件日志信息即可:

[root@hadoop ~]# ls /data/presto/log/
20201116_132435_00000_tvyva  20201116_132643_00001_tvyva  20201116_132652_00002_tvyva
[root@hadoop ~]# cat /data/presto/log/20201116_132435_00000_tvyva 
User:root Id:20201116_132435_00000_tvyva Query:use db01
Id:20201116_132435_00000_tvyva StartTime:1605533075986 EndTime:1605533076000 State:FINISHED
[root@hadoop ~]# cat /data/presto/log/20201116_132643_00001_tvyva 
User:root Id:20201116_132643_00001_tvyva Query:select * from log_dev
Id:20201116_132643_00001_tvyva StartTime:1605533204999 EndTime:1605533205193 StageId:20201116_132643_00001_tvyva.1 TaskId:0
...
Id:20201116_132643_00001_tvyva StartTime:1605533203889 EndTime:1605533205297 State:FINISHED
[root@hadoop ~]# cat /data/presto/log/20201116_132652_00002_tvyva 
User:root Id:20201116_132652_00002_tvyva Query:select * from log_dev2 limit 1
Id:20201116_132652_00002_tvyva StartTime:1605533212541 EndTime:1605533212644 StageId:20201116_132652_00002_tvyva.1 TaskId:0
...
Id:20201116_132652_00002_tvyva StartTime:1605533212413 EndTime:1605533212688 State:FINISHED
[root@hadoop ~]# 

Presto配置优化

Presto架构:

  • Presto采用典型的Master - Slave架构模型
  • Coordinator和Worker依赖Discovery Server进行相互通信
  • Coordinator和DiscoveryServer在设计上是单点的,存在单点问题

Presto高可用方案之绑定虚拟IP:
大数据平台建设 —— SQL查询引擎之Presto

Presto高可用方案之独立部署Discovery Server:
大数据平台建设 —— SQL查询引擎之Presto

Presto内存模型:

  • Presto采用逻辑的内存池,来管理不同类型的内存需求
  • Presto把整个内存划分成三个内存池,分别是System Pool,ReservedPool,General Pool
  • Presto 0.201+版本之后,默认不启用SystemPool,只保留ReservedPool和General Pool
  • System Pool是用来保留给系统使用的,默认为40%的内存空间留给系统使用,0.201+版本,SystemPool合并到GeneralPool
  • Reserved Pool和General Pool用来分配query运行时内存
  • 大部分的query使用General Pool,当General Pool满了之后,将使用内存最大的SQL放到Reserved Pool执行

Presto内存管理:

  • Query内存管理:query划分成很多task,每个task会有一个线程循环获取task的状态,包括task所用内存。汇总成query所用内存
  • 机器内存管理:Coordinator有一个线程,定时的轮询每台机器,查看当前的机器内存状态

Presto通过两点判断集群是否达到了内存的上限:

  • General Pool出现阻塞节点(Block node)
  • Reserved Pool已经被使用

通过设置query.low-memory-killer.policy配置参数,可以指定kill查询的策略。该参数取值:total-reservation-on-blocked-nodes(kill在阻塞节点上使用内存最多的查询)或者total-reservation(kill最耗费内存的查询)

在了解了Presto的内存模型和内存管理后,以下列举一些在Presto中可以优化的配置参数:

  • query.max-memory:单个query在整个集群中允许占用的最大user memory
  • query.max-total-memory:单个query在整个集群中允许占用的最大(user + system) memory
  • query.max-memory-per-node:一个query在单个worker上允许的最大user memory,即ReservedPool,默认为heapSize的0.1
  • query.max-total-memory-per-node:一个query在单个worker上允许的最大(user + system) memory

用户查询数据量/复杂性,决定了ReservedPool大小;用户查询并发度,决定了jvm heapSize的大小

大数据平台建设 —— SQL查询引擎之Presto

上一篇:Docker:5 扩展学习之安装mysql并且将数据挂载到本地磁盘


下一篇:SQL语法3