hdu1214 圆桌会议

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1214

HDU ACM集训队的队员在暑假集训时经常要讨论自己在做题中遇到的问题.每当面临自己解决不了的问题时,他们
就会围坐在一张圆形的桌子旁进行交流,经过大家的讨论后一般没有解决不了的问题,这也只有HDU ACM集训队特
有的圆桌会议,有一天你也可以进来体会一下哦:),在一天在讨论的时候,Eddy想出了一个极为古怪的想法,如果他们
在每一分钟内,一对相邻的两个ACM队员交换一下位子,那么要多少时间才能得到与原始状态相反的座位顺序呢?(即
对于每个队员,原先在他左面的队员后来在他右面,原先在他右面的队员在他左面),这当然难不倒其他的聪明的其
他队友们,马上就把这个古怪的问题给解决了,你知道是怎么解决的吗?

  

  首先我们不难想到,让一个不动,第二个去第n个位置,移动n-2次,然后第3个(此时在第二个位置)去第n-1个位置,移动n-3次。。。这样移动下来一共需要(n-1)*(n-2)/2次,发现过不了样例,忧伤~

  而对于直线型的桌子,第一个就必须得到最后一个去才能实现逆序,所以最终需要移动的就是n*(n-1)/2次,这样我们发现挨个移动到相应位置的确是最优的方案,但是我们这样移动到底冤枉路走在了哪里那?读题我们会发现,虽然最后要求逆序,但每个人坐在哪里是没有硬性要求的,毕竟是圆形桌子,那么,我们把n个人平均分成两部分,每部分各自移动比如12345  让12变成21需要一次,345变成543需要3次,这样就变成了21543,符合要求,并且运用了一次二分一样的思想把次数降了下去(真神奇)

代码:

 #include<iostream>
#include<cstdio>
using namespace std;
int n;
int n1;
int ans;
int main()
{
while(scanf("%d",&n)!=EOF)
{
ans=;
n1=n/;
n-=n1;
ans+=(n1*(n1-))/;
ans+=(n*(n-))/;
printf("%d\n",ans);
}
return ;
}
上一篇:Mac安装python3.x+pycharm+elasticsearch+常见报错处理(1)


下一篇:【Android进阶】解析XML文件之使用DOM解析器