感觉这东西跟mongodb差不多,安装和布置挺简单,
下载地址:https://github.com/dmajkic/redis/downloads 下载下来的包里有两个,
一个是32位的,一个是64位的。根据自己的实情情况选择,我的是64bit,
把这个文件夹复制到其它地方,比如D:\JavaWork\rediswork\redis-2.4.5-win32-win64\32bit目录下。
打开一个cmd窗口 使用cd命令切换目录到D:\JavaWork\rediswork\redis-2.4.5-win32-win64\32bit 运行 redis-server.exe redis.conf
如果想方便的话,可以把redis的路径加到系统的环境变量里,这样就省得再输路径了,后面的那个redis.conf可以省略,如果省略,会启用默认的。输入之后,会显示如下界面:
这时候别启一个cmd窗口,原来的不要关闭,不然就无法访问服务端了
切换到redis目录下运行 redis-cli.exe -h 127.0.0.1 -p 6379 出现下图:
这时候,就已经完成配置了,现在说下它的的redis.conf配置文件。下面是相关项的说明,
- # Redis configuration file example
- # Note on units: when memory size is needed, it is possible to specifiy
- # it in the usual form of 1k 5GB 4M and so forth:
- #
- # 1k => 1000 bytes
- # 1kb => 1024 bytes
- # 1m => 1000000 bytes
- # 1mb => 1024*1024 bytes
- # 1g => 1000000000 bytes
- # 1gb => 1024*1024*1024 bytes
- #
- # units are case insensitive so 1GB 1Gb 1gB are all the same.
- # By default Redis does not run as a daemon. Use ‘yes‘ if you need it.
- # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
- daemonize no
- Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
- # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
- # default. You can specify a custom pid file location here.
- pidfile /var/run/redis.pid
- 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
- # Accept connections on the specified port, default is 6379.
- # If port 0 is specified Redis will not listen on a TCP socket.
- port 6379
- 指定Redis监听端口,默认端口为6379
- # If you want you can bind a single interface, if the bind option is not
- # specified all the interfaces will listen for incoming connections.
- #
- # bind 127.0.0.1
- 绑定的主机地址
- # Specify the path for the unix socket that will be used to listen for
- # incoming connections. There is no default, so Redis will not listen
- # on a unix socket when not specified.
- #
- # unixsocket /tmp/redis.sock
- # unixsocketperm 755
- # Close the connection after a client is idle for N seconds (0 to disable)
- timeout 0
- 当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
- # Set server verbosity to ‘debug‘
- # it can be one of:
- # debug (a lot of information, useful for development/testing)
- # verbose (many rarely useful info, but not a mess like the debug level)
- # notice (moderately verbose, what you want in production probably)
- # warning (only very important / critical messages are logged)
- loglevel verbose
- 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
- # Specify the log file name. Also ‘stdout‘ can be used to force
- # Redis to log on the standard output. Note that if you use standard
- # output for logging but daemonize, logs will be sent to /dev/null
- logfile stdout
- 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
- # To enable logging to the system logger, just set ‘syslog-enabled‘ to yes,
- # and optionally update the other syslog parameters to suit your needs.
- # syslog-enabled no
- # Specify the syslog identity.
- # syslog-ident redis
- # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
- # syslog-facility local0
- # Set the number of databases. The default database is DB 0, you can select
- # a different one on a per-connection basis using SELECT <dbid> where
- # dbid is a number between 0 and ‘databases‘-1
- databases 16
- 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
- ################################ SNAPSHOTTING #################################
- #
- # Save the DB on disk:
- #
- # save <seconds> <changes>
- #
- # Will save the DB if both the given number of seconds and the given
- # number of write operations against the DB occurred.
- #
- # In the example below the behaviour will be to save:
- # after 900 sec (15 min) if at least 1 key changed
- # after 300 sec (5 min) if at least 10 keys changed
- # after 60 sec if at least 10000 keys changed
- #
- # Note: you can disable saving at all commenting all the "save" lines.
- save 900 1
- save 300 10
- save 60 10000
- 分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
- 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
- # Compress string objects using LZF when dump .rdb databases?
- # For default that‘s set to ‘yes‘ as it‘s almost always a win.
- # If you want to save some CPU in the saving child set it to ‘no‘ but
- # the dataset will likely be bigger if you have compressible values or keys.
- rdbcompression yes
- 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
- # The filename where to dump the DB
- dbfilename dump.rdb
- 指定本地数据库文件名,默认值为dump.rdb
- # The working directory.
- #
- # The DB will be written inside this directory, with the filename specified
- # above using the ‘dbfilename‘ configuration directive.
- #
- # Also the Append Only File will be created inside this directory.
- #
- # Note that you must specify a directory here, not a file name.
- dir ./
- 指定本地数据库存放目录
- ################################# REPLICATION #################################
- # Master-Slave replication. Use slaveof to make a Redis instance a copy of
- # another Redis server. Note that the configuration is local to the slave
- # so for example it is possible to configure the slave to save the DB with a
- # different interval, or to listen to another port, and so on.
- #
- # slaveof <masterip> <masterport>
- slaveof <masterip> <masterport> 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
- # If the master is password protected (using the "requirepass" configuration
- # directive below) it is possible to tell the slave to authenticate before
- # starting the replication synchronization process, otherwise the master will
- # refuse the slave request.
- #
- # masterauth <master-password>
- masterauth <master-password> 当master服务设置了密码保护时,slav服务连接master的密码
- # When a slave lost the connection with the master, or when the replication
- # is still in progress, the slave can act in two different ways:
- #
- # 1) if slave-serve-stale-data is set to ‘yes‘ (the default) the slave will
- # still reply to client requests, possibly with out of data data, or the
- # data set may just be empty if this is the first synchronization.
- #
- # 2) if slave-serve-stale data is set to ‘no‘ the slave will reply with
- # an error "SYNC with master in progress" to all the kind of commands
- # but to INFO and SLAVEOF.
- #
- slave-serve-stale-data yes
- # Slaves send PINGs to server in a predefined interval. It‘s possible to change
- # this interval with the repl_ping_slave_period option. The default value is 10
- # seconds.
- #
- # repl-ping-slave-period 10
- # The following option sets a timeout for both Bulk transfer I/O timeout and
- # master data or ping response timeout. The default value is 60 seconds.
- #
- # It is important to make sure that this value is greater than the value
- # specified for repl-ping-slave-period otherwise a timeout will be detected
- # every time there is low traffic between the master and the slave.
- #
- # repl-timeout 60
- ################################## SECURITY ###################################
- # Require clients to issue AUTH <PASSWORD> before processing any other
- # commands. This might be useful in environments in which you do not trust
- # others with access to the host running redis-server.
- #
- # This should stay commented out for backward compatibility and because most
- # people do not need auth (e.g. they run their own servers).
- #
- # Warning: since Redis is pretty fast an outside user can try up to
- # 150k passwords per second against a good box. This means that you should
- # use a very strong password otherwise it will be very easy to break.
- #
- # requirepass foobared
- requirepass foobared 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
- # Command renaming.
- #
- # It is possilbe to change the name of dangerous commands in a shared
- # environment. For instance the CONFIG command may be renamed into something
- # of hard to guess so that it will be still available for internal-use
- # tools but not available for general clients.
- #
- # Example:
- #
- # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
- #
- # It is also possilbe to completely kill a command renaming it into
- # an empty string:
- #
- # rename-command CONFIG ""
- ################################### LIMITS ####################################
- # Set the max number of connected clients at the same time. By default there
- # is no limit, and it‘s up to the number of file descriptors the Redis process
- # is able to open. The special value ‘0‘ means no limits.
- # Once the limit is reached Redis will close all the new connections sending
- # an error ‘max number of clients reached‘.
- #
- # maxclients 128
- maxclients 128 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
- # Don‘t use more memory than the specified amount of bytes.
- # When the memory limit is reached Redis will try to remove keys with an
- # EXPIRE set. It will try to start freeing keys that are going to expire
- # in little time and preserve keys with a longer time to live.
- # Redis will also try to remove objects from free lists if possible.
- #
- # If all this fails, Redis will start to reply with errors to commands
- # that will use more memory, like SET, LPUSH, and so on, and will continue
- # to reply to most read-only commands like GET.
- #
- # WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
- # ‘state‘ server or cache, not as a real DB. When Redis is used as a real
- # database the memory usage will grow over the weeks, it will be obvious if
- # it is going to use too much memory in the long run, and you‘ll have the time
- # to upgrade. With maxmemory after the limit is reached you‘ll start to get
- # errors for write operations, and this may even lead to DB inconsistency.
- #
- # maxmemory <bytes>
- maxmemory <bytes>指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
- # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
- # is reached? You can select among five behavior:
- #
- # volatile-lru -> remove the key with an expire set using an LRU algorithm
- # allkeys-lru -> remove any key accordingly to the LRU algorithm
- # volatile-random -> remove a random key with an expire set
- # allkeys->random -> remove a random key, any key
- # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
- # noeviction -> don‘t expire at all, just return an error on write operations
- #
- # Note: with all the kind of policies, Redis will return an error on write
- # operations, when there are not suitable keys for eviction.
- #
- # At the date of writing this commands are: set setnx setex append
- # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
- # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
- # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
- # getset mset msetnx exec sort
- #
- # The default is:
- #
- # maxmemory-policy volatile-lru
- # LRU and minimal TTL algorithms are not precise algorithms but approximated
- # algorithms (in order to save memory), so you can select as well the sample
- # size to check. For instance for default Redis will check three keys and
- # pick the one that was used less recently, you can change the sample size
- # using the following configuration directive.
- #
- # maxmemory-samples 3
- ############################## APPEND ONLY MODE ###############################
- # By default Redis asynchronously dumps the dataset on disk. If you can live
- # with the idea that the latest records will be lost if something like a crash
- # happens this is the preferred way to run Redis. If instead you care a lot
- # about your data and don‘t want to that a single record can get lost you should
- # enable the append only mode: when this mode is enabled Redis will append
- # every write operation received in the file appendonly.aof. This file will
- # be read on startup in order to rebuild the full dataset in memory.
- #
- # Note that you can have both the async dumps and the append only file if you
- # like (you have to comment the "save" statements above to disable the dumps).
- # Still if append only mode is enabled Redis will load the data from the
- # log file at startup ignoring the dump.rdb file.
- #
- # IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
- # log file in background when it gets too big.
- appendonly no
- appendonly no指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
- # The name of the append only file (default: "appendonly.aof")
- # appendfilename appendonly.aof
- appendfilename appendonly.aof指定更新日志文件名,默认为appendonly.aof
- # The fsync() call tells the Operating System to actually write data on disk
- # instead to wait for more data in the output buffer. Some OS will really flush
- # data on disk, some other OS will just try to do it ASAP.
- #
- # Redis supports three different modes:
- #
- # no: don‘t fsync, just let the OS flush the data when it wants. Faster.
- # always: fsync after every write to the append only log . Slow, Safest.
- # everysec: fsync only if one second passed since the last fsync. Compromise.
- #
- # The default is "everysec" that‘s usually the right compromise between
- # speed and data safety. It‘s up to you to understand if you can relax this to
- # "no" that will will let the operating system flush the output buffer when
- # it wants, for better performances (but if you can live with the idea of
- # some data loss consider the default persistence mode that‘s snapshotting),
- # or on the contrary, use "always" that‘s very slow but a bit safer than
- # everysec.
- #
- # If unsure, use "everysec".
- # appendfsync always
- appendfsync everysec
- # appendfsync no
- 指定更新日志条件,共有3个可选值:
- no:表示等操作系统进行数据缓存同步到磁盘(快)
- always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
- everysec:表示每秒同步一次(折衷,默认值)
- # When the AOF fsync policy is set to always or everysec, and a background
- # saving process (a background save or AOF log background rewriting) is
- # performing a lot of I/O against the disk, in some Linux configurations
- # Redis may block too long on the fsync() call. Note that there is no fix for
- # this currently, as even performing fsync in a different thread will block
- # our synchronous write(2) call.
- #
- # In order to mitigate this problem it‘s possible to use the following option
- # that will prevent fsync() from being called in the main process while a
- # BGSAVE or BGREWRITEAOF is in progress.
- #
- # This means that while another child is saving the durability of Redis is
- # the same as "appendfsync none", that in pratical terms means that it is
- # possible to lost up to 30 seconds of log in the worst scenario (with the
- # default Linux settings).
- #
- # If you have latency problems turn this to "yes". Otherwise leave it as
- # "no" that is the safest pick from the point of view of durability.
- no-appendfsync-on-rewrite no
- # Automatic rewrite of the append only file.
- # Redis is able to automatically rewrite the log file implicitly calling
- # BGREWRITEAOF when the AOF log size will growth by the specified percentage.
- #
- # This is how it works: Redis remembers the size of the AOF file after the
- # latest rewrite (or if no rewrite happened since the restart, the size of
- # the AOF at startup is used).
- #
- # This base size is compared to the current size. If the current size is
- # bigger than the specified percentage, the rewrite is triggered. Also
- # you need to specify a minimal size for the AOF file to be rewritten, this
- # is useful to avoid rewriting the AOF file even if the percentage increase
- # is reached but it is still pretty small.
- #
- # Specify a precentage of zero in order to disable the automatic AOF
- # rewrite feature.
- auto-aof-rewrite-percentage 100
- auto-aof-rewrite-min-size 64mb
- ################################## SLOW LOG ###################################
- # The Redis Slow Log is a system to log queries that exceeded a specified
- # execution time. The execution time does not include the I/O operations
- # like talking with the client, sending the reply and so forth,
- # but just the time needed to actually execute the command (this is the only
- # stage of command execution where the thread is blocked and can not serve
- # other requests in the meantime).
- #
- # You can configure the slow log with two parameters: one tells Redis
- # what is the execution time, in microseconds, to exceed in order for the
- # command to get logged, and the other parameter is the length of the
- # slow log. When a new command is logged the oldest one is removed from the
- # queue of logged commands.
- # The following time is expressed in microseconds, so 1000000 is equivalent
- # to one second. Note that a negative number disables the slow log, while
- # a value of zero forces the logging of every command.
- slowlog-log-slower-than 10000
- # There is no limit to this length. Just be aware that it will consume memory.
- # You can reclaim memory used by the slow log with SLOWLOG RESET.
- slowlog-max-len 1024
- ################################ VIRTUAL MEMORY ###############################
- ### WARNING! Virtual Memory is deprecated in Redis 2.4
- ### The use of Virtual Memory is strongly discouraged.
- ### WARNING! Virtual Memory is deprecated in Redis 2.4
- ### The use of Virtual Memory is strongly discouraged.
- # Virtual Memory allows Redis to work with datasets bigger than the actual
- # amount of RAM needed to hold the whole dataset in memory.
- # In order to do so very used keys are taken in memory while the other keys
- # are swapped into a swap file, similarly to what operating systems do
- # with memory pages.
- #
- # To enable VM just set ‘vm-enabled‘ to yes, and set the following three
- # VM parameters accordingly to your needs.
- vm-enabled no
- 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
- # vm-enabled yes
- # This is the path of the Redis swap file. As you can guess, swap files
- # can‘t be shared by different Redis instances, so make sure to use a swap
- # file for every redis process you are running. Redis will complain if the
- # swap file is already in use.
- #
- # The best kind of storage for the Redis swap file (that‘s accessed at random)
- # is a Solid State Disk (SSD).
- #
- # *** WARNING *** if you are using a shared hosting the default of putting
- # the swap file under /tmp is not secure. Create a dir with access granted
- # only to Redis user and configure Redis to create the swap file there.
- vm-swap-file /tmp/redis.swap
- 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
- # vm-max-memory configures the VM to use at max the specified amount of
- # RAM. Everything that deos not fit will be swapped on disk *if* possible, that
- # is, if there is still enough contiguous space in the swap file.
- #
- # With vm-max-memory 0 the system will swap everything it can. Not a good
- # default, just specify the max amount of RAM you can in bytes, but it‘s
- # better to leave some margin. For instance specify an amount of RAM
- # that‘s more or less between 60 and 80% of your free RAM.
- vm-max-memory 0
- 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
- # Redis swap files is split into pages. An object can be saved using multiple
- # contiguous pages, but pages can‘t be shared between different objects.
- # So if your page is too big, small objects swapped out on disk will waste
- # a lot of space. If you page is too small, there is less space in the swap
- # file (assuming you configured the same number of total swap file pages).
- #
- # If you use a lot of small objects, use a page size of 64 or 32 bytes.
- # If you use a lot of big objects, use a bigger page size.
- # If unsure, use the default :)
- vm-page-size 32
- Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
- # Number of total memory pages in the swap file.
- # Given that the page table (a bitmap of free/used pages) is taken in memory,
- # every 8 pages on disk will consume 1 byte of RAM.
- #
- # The total swap size is vm-page-size * vm-pages
- #
- # With the default of 32-bytes memory pages and 134217728 pages Redis will
- # use a 4 GB swap file, that will use 16 MB of RAM for the page table.
- #
- # It‘s better to use the smallest acceptable value for your application,
- # but the default is large in order to work in most conditions.
- vm-pages 134217728
- 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
- # Max number of VM I/O threads running at the same time.
- # This threads are used to read/write data from/to swap file, since they
- # also encode and decode objects from disk to memory or the reverse, a bigger
- # number of threads can help with big objects even if they can‘t help with
- # I/O itself as the physical device may not be able to couple with many
- # reads/writes operations at the same time.
- #
- # The special value of 0 turn off threaded I/O and enables the blocking
- # Virtual Memory implementation.
- vm-max-threads 4
- 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
- ############################### ADVANCED CONFIG ###############################
- # Hashes are encoded in a special way (much more memory efficient) when they
- # have at max a given numer of elements, and the biggest element does not
- # exceed a given threshold. You can configure this limits with the following
- # configuration directives.
- hash-max-zipmap-entries 512
- hash-max-zipmap-value 64
- 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
- # Similarly to hashes, small lists are also encoded in a special way in order
- # to save a lot of space. The special representation is only used when
- # you are under the following limits:
- list-max-ziplist-entries 512
- list-max-ziplist-value 64
- # Sets have a special encoding in just one case: when a set is composed
- # of just strings that happens to be integers in radix 10 in the range
- # of 64 bit signed integers.
- # The following configuration setting sets the limit in the size of the
- # set in order to use this special memory saving encoding.
- set-max-intset-entries 512
- # Similarly to hashes and lists, sorted sets are also specially encoded in
- # order to save a lot of space. This encoding is only used when the length and
- # elements of a sorted set are below the following limits:
- zset-max-ziplist-entries 128
- zset-max-ziplist-value 64
- # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
- # order to help rehashing the main Redis hash table (the one mapping top-level
- # keys to values). The hash table implementation redis uses (see dict.c)
- # performs a lazy rehashing: the more operation you run into an hash table
- # that is rhashing, the more rehashing "steps" are performed, so if the
- # server is idle the rehashing is never complete and some more memory is used
- # by the hash table.
- #
- # The default is to use this millisecond 10 times every second in order to
- # active rehashing the main dictionaries, freeing memory when possible.
- #
- # If unsure:
- # use "activerehashing no" if you have hard latency requirements and it is
- # not a good thing in your environment that Redis can reply form time to time
- # to queries with 2 milliseconds delay.
- #
- # use "activerehashing yes" if you don‘t have such hard requirements but
- # want to free memory asap when possible.
- activerehashing yes
- ################################## INCLUDES ###################################
- # Include one or more other config files here. This is useful if you
- # have a standard template that goes to all redis server but also need
- # to customize a few per-server settings. Include files can include
- # other files, so use this wisely.
- #
- # include /path/to/local.conf
- # include /path/to/other.conf