HDL_Graph_slam骨头记(3)

#include <memory>
#include <iostream>

#include <ros/ros.h>
#include <ros/time.h>
#include <ros/duration.h>
#include <pcl_ros/point_cloud.h>
#include <tf_conversions/tf_eigen.h>
#include <tf/transform_broadcaster.h>

#include <std_msgs/Time.h>
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/PointCloud2.h>

#include <nodelet/nodelet.h>
#include <pluginlib/class_list_macros.h>

#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/approximate_voxel_grid.h>

#include <hdl_graph_slam/ros_utils.hpp>
#include <hdl_graph_slam/registrations.hpp>

namespace hdl_graph_slam {

class ScanMatchingOdometryNodelet : public nodelet::Nodelet {
public:
  typedef pcl::PointXYZI PointT;
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  ScanMatchingOdometryNodelet() {}
  virtual ~ScanMatchingOdometryNodelet() {}

  virtual void onInit() {
    NODELET_DEBUG("initializing scan_matching_odometry_nodelet...");
    nh = getNodeHandle();
    private_nh = getPrivateNodeHandle();

    initialize_params();

    points_sub = nh.subscribe("/filtered_points", 256, &ScanMatchingOdometryNodelet::cloud_callback, this);
    read_until_pub = nh.advertise<std_msgs::Header>("/scan_matching_odometry/read_until", 32);
    odom_pub = nh.advertise<nav_msgs::Odometry>("/odom", 32);
  }

private:
  /**
   * @brief initialize parameters
   */
  void initialize_params() {
    auto& pnh = private_nh;
    points_topic = pnh.param<std::string>("points_topic", "/velodyne_points");
    odom_frame_id = pnh.param<std::string>("odom_frame_id", "odom");

    // The minimum tranlational distance and rotation angle between keyframes.
    // If this value is zero, frames are always compared with the previous frame
    keyframe_delta_trans = pnh.param<double>("keyframe_delta_trans", 0.25);
    keyframe_delta_angle = pnh.param<double>("keyframe_delta_angle", 0.15);
    keyframe_delta_time = pnh.param<double>("keyframe_delta_time", 1.0);

    // Registration validation by thresholding
    transform_thresholding = pnh.param<bool>("transform_thresholding", false);
    max_acceptable_trans = pnh.param<double>("max_acceptable_trans", 1.0);
    max_acceptable_angle = pnh.param<double>("max_acceptable_angle", 1.0);

    // select a downsample method (VOXELGRID, APPROX_VOXELGRID, NONE)
    std::string downsample_method = pnh.param<std::string>("downsample_method", "VOXELGRID");
    double downsample_resolution = pnh.param<double>("downsample_resolution", 0.1);
    if(downsample_method == "VOXELGRID") {
      std::cout << "downsample: VOXELGRID " << downsample_resolution << std::endl;
      boost::shared_ptr<pcl::VoxelGrid<PointT>> voxelgrid(new pcl::VoxelGrid<PointT>());
      voxelgrid->setLeafSize(downsample_resolution, downsample_resolution, downsample_resolution);
      downsample_filter = voxelgrid;
    } else if(downsample_method == "APPROX_VOXELGRID") {
      std::cout << "downsample: APPROX_VOXELGRID " << downsample_resolution << std::endl;
      boost::shared_ptr<pcl::ApproximateVoxelGrid<PointT>> approx_voxelgrid(new pcl::ApproximateVoxelGrid<PointT>());
      approx_voxelgrid->setLeafSize(downsample_resolution, downsample_resolution, downsample_resolution);
      downsample_filter = approx_voxelgrid;
    } else {
      if(downsample_method != "NONE") {
        std::cerr << "warning: unknown downsampling type (" << downsample_method << ")" << std::endl;
        std::cerr << "       : use passthrough filter" <<std::endl;
      }
      std::cout << "downsample: NONE" << std::endl;
      boost::shared_ptr<pcl::PassThrough<PointT>> passthrough(new pcl::PassThrough<PointT>());
      downsample_filter = passthrough;
    }

    registration = select_registration_method(pnh);
  }

  /**
   * @brief callback for point clouds
   * @param cloud_msg  point cloud msg
   */
  void cloud_callback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg) {
    if(!ros::ok()) {
      return;
    }

    pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>());
    pcl::fromROSMsg(*cloud_msg, *cloud);

    Eigen::Matrix4f pose = matching(cloud_msg->header.stamp, cloud);
    publish_odometry(cloud_msg->header.stamp, cloud_msg->header.frame_id, pose);

    // In offline estimation, point clouds until the published time will be supplied
    std_msgs::HeaderPtr read_until(new std_msgs::Header());
    read_until->frame_id = points_topic;
    read_until->stamp = cloud_msg->header.stamp + ros::Duration(1, 0);
    read_until_pub.publish(read_until);

    read_until->frame_id = "/filtered_points";
    read_until_pub.publish(read_until);

  }

  /**
   * @brief downsample a point cloud
   * @param cloud  input cloud
   * @return downsampled point cloud
   */
  pcl::PointCloud<PointT>::ConstPtr downsample(const pcl::PointCloud<PointT>::ConstPtr& cloud) const {
    if(!downsample_filter) {
      return cloud;
    }

    pcl::PointCloud<PointT>::Ptr filtered(new pcl::PointCloud<PointT>());
    downsample_filter->setInputCloud(cloud);
    downsample_filter->filter(*filtered);

    return filtered;
  }

  /**
   * @brief estimate the relative pose between an input cloud and a keyframe cloud
   * @param stamp  the timestamp of the input cloud
   * @param cloud  the input cloud
   * @return the relative pose between the input cloud and the keyframe cloud
   */
  Eigen::Matrix4f matching(const ros::Time& stamp, const pcl::PointCloud<PointT>::ConstPtr& cloud) {
    if(!keyframe) {
      prev_trans.setIdentity(); //设置恒等矩阵 (恒等矩阵的值为 1)相当于初始化
      keyframe_pose.setIdentity();
      keyframe_stamp = stamp;
      keyframe = downsample(cloud);
      registration->setInputTarget(keyframe); //ROS注册
      return Eigen::Matrix4f::Identity(); //使用Identity()函数的作用:在定义变量时使用Eigen::Matrix4f x =  Eigen::Matrix4f::Identity();即用单位矩阵对x变量进行了初始化。
    } //四维矩阵 时间戳与点云数据组成4维矩阵 此块代码做了一个初始化

    auto filtered = downsample(cloud);
    registration->setInputSource(filtered);

    pcl::PointCloud<PointT>::Ptr aligned(new pcl::PointCloud<PointT>());
    registration->align(*aligned, prev_trans);

    if(!registration->hasConverged()) {
      NODELET_INFO_STREAM("scan matching has not converged!!");
      NODELET_INFO_STREAM("ignore this frame(" << stamp << ")");
      return keyframe_pose * prev_trans;
    }

    Eigen::Matrix4f trans = registration->getFinalTransformation();
    Eigen::Matrix4f odom = keyframe_pose * trans; 
    if(transform_thresholding) {
      Eigen::Matrix4f delta = prev_trans.inverse() * trans;
      double dx = delta.block<3, 1>(0, 3).norm(); //3*1维的block matrix.block<p,q>(i, j) :<p, q>可理解为一个p行q列的子矩阵,该定义表示从原矩阵中第(i, j)开始,获取一个p行q列的子矩阵,返回该子矩阵组成的临时矩阵对象,原矩阵的元素不变;
      double da = std::acos(Eigen::Quaternionf(delta.block<3, 3>(0, 0)).w());//

      if(dx > max_acceptable_trans || da > max_acceptable_angle) {
        NODELET_INFO_STREAM("too large transform!!  " << dx << "[m] " << da << "[rad]");
        NODELET_INFO_STREAM("ignore this frame(" << stamp << ")");
        return keyframe_pose * prev_trans;
      }
    }

    prev_trans = trans;


    auto keyframe_trans = matrix2transform(stamp, keyframe_pose, odom_frame_id, "keyframe");
    keyframe_broadcaster.sendTransform(keyframe_trans);

    double delta_trans = trans.block<3, 1>(0, 3).norm();
    double delta_angle = std::acos(Eigen::Quaternionf(trans.block<3, 3>(0, 0)).w());
    double delta_time = (stamp - keyframe_stamp).toSec();
    if(delta_trans > keyframe_delta_trans || delta_angle > keyframe_delta_angle || delta_time > keyframe_delta_time) {
      keyframe = filtered;
      registration->setInputTarget(keyframe);

      keyframe_pose = odom;
      keyframe_stamp = stamp;
      prev_trans.setIdentity();
    }

    return odom;
  }

  /**
   * @brief publish odometry
   * @param stamp  timestamp
   * @param pose   odometry pose to be published
   */
  void publish_odometry(const ros::Time& stamp, const std::string& base_frame_id, const Eigen::Matrix4f& pose) {
    // broadcast the transform over tf
    geometry_msgs::TransformStamped odom_trans = matrix2transform(stamp, pose, odom_frame_id, base_frame_id);
    odom_broadcaster.sendTransform(odom_trans);

    // publish the transform
    nav_msgs::Odometry odom;
    odom.header.stamp = stamp;
    odom.header.frame_id = odom_frame_id;

    odom.pose.pose.position.x = pose(0, 3);
    odom.pose.pose.position.y = pose(1, 3);
    odom.pose.pose.position.z = pose(2, 3);
    odom.pose.pose.orientation = odom_trans.transform.rotation;

    odom.child_frame_id = base_frame_id;
    odom.twist.twist.linear.x = 0.0;
    odom.twist.twist.linear.y = 0.0;
    odom.twist.twist.angular.z = 0.0;

    odom_pub.publish(odom);
  }


private:
  // ROS topics
  ros::NodeHandle nh;
  ros::NodeHandle private_nh;

  ros::Subscriber points_sub;

  ros::Publisher odom_pub;
  tf::TransformBroadcaster odom_broadcaster;
  tf::TransformBroadcaster keyframe_broadcaster;

  std::string points_topic;
  std::string odom_frame_id;
  ros::Publisher read_until_pub;

  // keyframe parameters
  double keyframe_delta_trans;  // minimum distance between keyframes
  double keyframe_delta_angle;  //
  double keyframe_delta_time;   //

  // registration validation by thresholding
  bool transform_thresholding;  //
  double max_acceptable_trans;  //
  double max_acceptable_angle;

  // odometry calculation
  Eigen::Matrix4f prev_trans;                  // previous estimated transform from keyframe
  Eigen::Matrix4f keyframe_pose;               // keyframe pose
  ros::Time keyframe_stamp;                    // keyframe time
  pcl::PointCloud<PointT>::ConstPtr keyframe;  // keyframe point cloud

  //
  pcl::Filter<PointT>::Ptr downsample_filter;
  pcl::Registration<PointT, PointT>::Ptr registration;
};

}

PLUGINLIB_EXPORT_CLASS(hdl_graph_slam::ScanMatchingOdometryNodelet, nodelet::Nodelet)
上一篇:slam 理解


下一篇:学习css中得与惑