【原创】大数据基础之Spark(8)Spark中Join实现原理

spark中join有两种,一种是RDD的join,一种是sql中的join,分别来看:

1 RDD join

org.apache.spark.rdd.PairRDDFunctions

  /**
* Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
* pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
* (k, v2) is in `other`. Performs a hash join across the cluster.
*/
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope {
join(other, defaultPartitioner(self, other))
} /**
* Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
* pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
* (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD.
*/
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = self.withScope {
this.cogroup(other, partitioner).flatMapValues( pair =>
for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w)
)
} /**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner)
: RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
throw new SparkException("HashPartitioner cannot partition array keys.")
}
val cg = new CoGroupedRDD[K](Seq(self, other), partitioner)
cg.mapValues { case Array(vs, w1s) =>
(vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]])
}
}

join操作会返回CoGroupedRDD,CoGroupedRDD构造参数为rdd数组,即多个需要join的rdd,下面看CoGroupedRDD:

org.apache.spark.rdd.CoGroupedRDD

class CoGroupedRDD[K: ClassTag](
@transient var rdds: Seq[RDD[_ <: Product2[K, _]]],
part: Partitioner)
extends RDD[(K, Array[Iterable[_]])](rdds.head.context, Nil) { override def getDependencies: Seq[Dependency[_]] = {
rdds.map { rdd: RDD[_] =>
if (rdd.partitioner == Some(part)) {
logDebug("Adding one-to-one dependency with " + rdd)
new OneToOneDependency(rdd)
} else {
logDebug("Adding shuffle dependency with " + rdd)
new ShuffleDependency[K, Any, CoGroupCombiner](
rdd.asInstanceOf[RDD[_ <: Product2[K, _]]], part, serializer)
}
}
} override def compute(s: Partition, context: TaskContext): Iterator[(K, Array[Iterable[_]])] = {
val split = s.asInstanceOf[CoGroupPartition]
val numRdds = dependencies.length // A list of (rdd iterator, dependency number) pairs
val rddIterators = new ArrayBuffer[(Iterator[Product2[K, Any]], Int)]
for ((dep, depNum) <- dependencies.zipWithIndex) dep match {
case oneToOneDependency: OneToOneDependency[Product2[K, Any]] @unchecked =>
val dependencyPartition = split.narrowDeps(depNum).get.split
// Read them from the parent
val it = oneToOneDependency.rdd.iterator(dependencyPartition, context)
rddIterators += ((it, depNum)) case shuffleDependency: ShuffleDependency[_, _, _] =>
// Read map outputs of shuffle
val it = SparkEnv.get.shuffleManager
.getReader(shuffleDependency.shuffleHandle, split.index, split.index + 1, context)
.read()
rddIterators += ((it, depNum))
} val map = createExternalMap(numRdds)
for ((it, depNum) <- rddIterators) {
map.insertAll(it.map(pair => (pair._1, new CoGroupValue(pair._2, depNum))))
}
context.taskMetrics().incMemoryBytesSpilled(map.memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(map.diskBytesSpilled)
context.taskMetrics().incPeakExecutionMemory(map.peakMemoryUsedBytes)
new InterruptibleIterator(context,
map.iterator.asInstanceOf[Iterator[(K, Array[Iterable[_]])]])
} private def createExternalMap(numRdds: Int)
: ExternalAppendOnlyMap[K, CoGroupValue, CoGroupCombiner] = { val createCombiner: (CoGroupValue => CoGroupCombiner) = value => {
val newCombiner = Array.fill(numRdds)(new CoGroup)
newCombiner(value._2) += value._1
newCombiner
}
val mergeValue: (CoGroupCombiner, CoGroupValue) => CoGroupCombiner =
(combiner, value) => {
combiner(value._2) += value._1
combiner
}
val mergeCombiners: (CoGroupCombiner, CoGroupCombiner) => CoGroupCombiner =
(combiner1, combiner2) => {
var depNum = 0
while (depNum < numRdds) {
combiner1(depNum) ++= combiner2(depNum)
depNum += 1
}
combiner1
}
new ExternalAppendOnlyMap[K, CoGroupValue, CoGroupCombiner](
createCombiner, mergeValue, mergeCombiners)
}

CoGroupedRDD首先将rdds逐个转化为dependency,然后将所有的dependency转化为rddIterators,最后通过ExternalAppendOnlyMap来实现合并;

如果rdd需要shuffle,是通过ShuffleManager实现,ShuffleManager实现类为SortShuffleManager,shuffle过程详见:https://www.cnblogs.com/barneywill/p/10158457.html

附:spark中dependency结构,即常说的宽依赖、窄依赖:

org.apache.spark.Dependency

Dependency

NarrowDependency

OneToOneDependency

RangeDependency

ShuffleDependency

区别就是shuffle,不需要shuffle就是NarrowDependency,需要就是ShuffleDependency;

2 sql join

sql中的join有一个选择策略:

org.apache.spark.sql.execution.SparkStrategies.JoinSelection

    def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {

      // --- BroadcastHashJoin --------------------------------------------------------------------

      case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if canBuildRight(joinType) && canBroadcast(right) =>
Seq(joins.BroadcastHashJoinExec(
leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right))) case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if canBuildLeft(joinType) && canBroadcast(left) =>
Seq(joins.BroadcastHashJoinExec(
leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right))) // --- ShuffledHashJoin --------------------------------------------------------------------- case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if !conf.preferSortMergeJoin && canBuildRight(joinType) && canBuildLocalHashMap(right)
&& muchSmaller(right, left) ||
!RowOrdering.isOrderable(leftKeys) =>
Seq(joins.ShuffledHashJoinExec(
leftKeys, rightKeys, joinType, BuildRight, condition, planLater(left), planLater(right))) case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if !conf.preferSortMergeJoin && canBuildLeft(joinType) && canBuildLocalHashMap(left)
&& muchSmaller(left, right) ||
!RowOrdering.isOrderable(leftKeys) =>
Seq(joins.ShuffledHashJoinExec(
leftKeys, rightKeys, joinType, BuildLeft, condition, planLater(left), planLater(right))) // --- SortMergeJoin ------------------------------------------------------------ case ExtractEquiJoinKeys(joinType, leftKeys, rightKeys, condition, left, right)
if RowOrdering.isOrderable(leftKeys) =>
joins.SortMergeJoinExec(
leftKeys, rightKeys, joinType, condition, planLater(left), planLater(right)) :: Nil
...

其中conf.preferSortMergeJoin

org.apache.spark.sql.internal.SQLConf

  val PREFER_SORTMERGEJOIN = SQLConfigBuilder("spark.sql.join.preferSortMergeJoin")
.internal()
.doc("When true, prefer sort merge join over shuffle hash join.")
.booleanConf
.createWithDefault(true)

配置spark.sql.join.preferSortMergeJoin,默认为true,即是否优先使用SortMergeJoin;

可以看到join实现主要有3种,即BroadcastHashJoinExec、ShuffledHashJoinExec和SortMergeJoinExec,优先级为

  • 1 如果canBroadcast,则BroadcastHashJoinExec;
  • 2 如果spark.sql.join.preferSortMergeJoin=false,则ShuffledHashJoinExec;
  • 3 否则为SortMergeJoinExec;

其中BroadcastHashJoinExec和ShuffledHashJoinExec都会用到HashJoin,先看HashJoin:

2.1 HashJoin

org.apache.spark.sql.execution.joins.HashJoin

  protected def join(
streamedIter: Iterator[InternalRow],
hashed: HashedRelation,
numOutputRows: SQLMetric): Iterator[InternalRow] = { val joinedIter = joinType match {
case _: InnerLike =>
innerJoin(streamedIter, hashed)
case LeftOuter | RightOuter =>
outerJoin(streamedIter, hashed)
case LeftSemi =>
semiJoin(streamedIter, hashed)
case LeftAnti =>
antiJoin(streamedIter, hashed)
case j: ExistenceJoin =>
existenceJoin(streamedIter, hashed)
case x =>
throw new IllegalArgumentException(
s"BroadcastHashJoin should not take $x as the JoinType")
} val resultProj = createResultProjection
joinedIter.map { r =>
numOutputRows += 1
resultProj(r)
}
} private def innerJoin(
streamIter: Iterator[InternalRow],
hashedRelation: HashedRelation): Iterator[InternalRow] = {
val joinRow = new JoinedRow
val joinKeys = streamSideKeyGenerator()
streamIter.flatMap { srow =>
joinRow.withLeft(srow)
val matches = hashedRelation.get(joinKeys(srow))
if (matches != null) {
matches.map(joinRow.withRight(_)).filter(boundCondition)
} else {
Seq.empty
}
}
}

这里只贴出内关联,即innerJoin,代码比较简单,注意这里是内存操作,会在单个partition内部进行;

2.2 BroadcastHashJoinExec

org.apache.spark.sql.execution.joins.BroadcastHashJoinExec

  protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows") val broadcastRelation = buildPlan.executeBroadcast[HashedRelation]()
streamedPlan.execute().mapPartitions { streamedIter =>
val hashed = broadcastRelation.value.asReadOnlyCopy()
TaskContext.get().taskMetrics().incPeakExecutionMemory(hashed.estimatedSize)
join(streamedIter, hashed, numOutputRows)
}
}

这里会将buildPlan广播出去,然后在streamedPlan上通过mapPartitions在1个分区内部进行join,join方法见HashJoin;

2.3 ShuffledHashJoinExec

org.apache.spark.sql.execution.joins.ShuffledHashJoinExec

  protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
streamedPlan.execute().zipPartitions(buildPlan.execute()) { (streamIter, buildIter) =>
val hashed = buildHashedRelation(buildIter)
join(streamIter, hashed, numOutputRows)
}
}

join过程为先将两个rdd(streamedPlan和buildPlan)进行zipPartitions,然后在1个partition内部join,join方法见HashJoin;

2.4 SortMergeJoinExec

org.apache.spark.sql.execution.joins.SortMergeJoinExec

  protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows") left.execute().zipPartitions(right.execute()) { (leftIter, rightIter) =>
val boundCondition: (InternalRow) => Boolean = {
condition.map { cond =>
newPredicate(cond, left.output ++ right.output).eval _
}.getOrElse {
(r: InternalRow) => true
}
} // An ordering that can be used to compare keys from both sides.
val keyOrdering = newNaturalAscendingOrdering(leftKeys.map(_.dataType))
val resultProj: InternalRow => InternalRow = UnsafeProjection.create(output, output) joinType match {
case _: InnerLike =>
new RowIterator {
private[this] var currentLeftRow: InternalRow = _
private[this] var currentRightMatches: ArrayBuffer[InternalRow] = _
private[this] var currentMatchIdx: Int = -1
private[this] val smjScanner = new SortMergeJoinScanner(
createLeftKeyGenerator(),
createRightKeyGenerator(),
keyOrdering,
RowIterator.fromScala(leftIter),
RowIterator.fromScala(rightIter)
)
private[this] val joinRow = new JoinedRow if (smjScanner.findNextInnerJoinRows()) {
currentRightMatches = smjScanner.getBufferedMatches
currentLeftRow = smjScanner.getStreamedRow
currentMatchIdx = 0
} override def advanceNext(): Boolean = {
while (currentMatchIdx >= 0) {
if (currentMatchIdx == currentRightMatches.length) {
if (smjScanner.findNextInnerJoinRows()) {
currentRightMatches = smjScanner.getBufferedMatches
currentLeftRow = smjScanner.getStreamedRow
currentMatchIdx = 0
} else {
currentRightMatches = null
currentLeftRow = null
currentMatchIdx = -1
return false
}
}
joinRow(currentLeftRow, currentRightMatches(currentMatchIdx))
currentMatchIdx += 1
if (boundCondition(joinRow)) {
numOutputRows += 1
return true
}
}
false
} override def getRow: InternalRow = resultProj(joinRow)
}.toScala
...

和ShuffledHashJoinExec一样,同样先zipPartitions,然后在1个partition内部根据joinType返回不同的RowIterator实现类,上边代码包含内关联实现,大部分工作通过SortMergeJoinScanner实现

org.apache.spark.sql.execution.joins.SortMergeJoinScanner

  final def findNextInnerJoinRows(): Boolean = {
while (advancedStreamed() && streamedRowKey.anyNull) {
// Advance the streamed side of the join until we find the next row whose join key contains
// no nulls or we hit the end of the streamed iterator.
}
if (streamedRow == null) {
// We have consumed the entire streamed iterator, so there can be no more matches.
matchJoinKey = null
bufferedMatches.clear()
false
} else if (matchJoinKey != null && keyOrdering.compare(streamedRowKey, matchJoinKey) == 0) {
// The new streamed row has the same join key as the previous row, so return the same matches.
true
} else if (bufferedRow == null) {
// The streamed row's join key does not match the current batch of buffered rows and there are
// no more rows to read from the buffered iterator, so there can be no more matches.
matchJoinKey = null
bufferedMatches.clear()
false
} else {
// Advance both the streamed and buffered iterators to find the next pair of matching rows.
var comp = keyOrdering.compare(streamedRowKey, bufferedRowKey)
do {
if (streamedRowKey.anyNull) {
advancedStreamed()
} else {
assert(!bufferedRowKey.anyNull)
comp = keyOrdering.compare(streamedRowKey, bufferedRowKey)
if (comp > 0) advancedBufferedToRowWithNullFreeJoinKey()
else if (comp < 0) advancedStreamed()
}
} while (streamedRow != null && bufferedRow != null && comp != 0)
if (streamedRow == null || bufferedRow == null) {
// We have either hit the end of one of the iterators, so there can be no more matches.
matchJoinKey = null
bufferedMatches.clear()
false
} else {
// The streamed row's join key matches the current buffered row's join, so walk through the
// buffered iterator to buffer the rest of the matching rows.
assert(comp == 0)
bufferMatchingRows()
true
}
}
} /**
* Advance the streamed iterator and compute the new row's join key.
* @return true if the streamed iterator returned a row and false otherwise.
*/
private def advancedStreamed(): Boolean = {
if (streamedIter.advanceNext()) {
streamedRow = streamedIter.getRow
streamedRowKey = streamedKeyGenerator(streamedRow)
true
} else {
streamedRow = null
streamedRowKey = null
false
}
} /**
* Advance the buffered iterator until we find a row with join key that does not contain nulls.
* @return true if the buffered iterator returned a row and false otherwise.
*/
private def advancedBufferedToRowWithNullFreeJoinKey(): Boolean = {
var foundRow: Boolean = false
while (!foundRow && bufferedIter.advanceNext()) {
bufferedRow = bufferedIter.getRow
bufferedRowKey = bufferedKeyGenerator(bufferedRow)
foundRow = !bufferedRowKey.anyNull
}
if (!foundRow) {
bufferedRow = null
bufferedRowKey = null
false
} else {
true
}
} /**
* Called when the streamed and buffered join keys match in order to buffer the matching rows.
*/
private def bufferMatchingRows(): Unit = {
assert(streamedRowKey != null)
assert(!streamedRowKey.anyNull)
assert(bufferedRowKey != null)
assert(!bufferedRowKey.anyNull)
assert(keyOrdering.compare(streamedRowKey, bufferedRowKey) == 0)
// This join key may have been produced by a mutable projection, so we need to make a copy:
matchJoinKey = streamedRowKey.copy()
bufferedMatches.clear()
do {
bufferedMatches += bufferedRow.copy() // need to copy mutable rows before buffering them
advancedBufferedToRowWithNullFreeJoinKey()
} while (bufferedRow != null && keyOrdering.compare(streamedRowKey, bufferedRowKey) == 0)
}

可以看到过程和二路归并排序Binary Merge Sort差不多;

附:RowIterator是一个抽象类,本质是一个接口,是一个常见的Iterator定义,如下:

org.apache.spark.sql.execution.RowIterator

abstract class RowIterator {
/**
* Advance this iterator by a single row. Returns `false` if this iterator has no more rows
* and `true` otherwise. If this returns `true`, then the new row can be retrieved by calling
* [[getRow]].
*/
def advanceNext(): Boolean /**
* Retrieve the row from this iterator. This method is idempotent. It is illegal to call this
* method after [[advanceNext()]] has returned `false`.
*/
def getRow: InternalRow /**
* Convert this RowIterator into a [[scala.collection.Iterator]].
*/
def toScala: Iterator[InternalRow] = new RowIteratorToScala(this)
}
上一篇:SQL-union


下一篇:tomcat错误信息解决方案【严重:StandardServer.await: create[8005]