BZOJ 3143 HNOI2013 游走 高斯消元 期望

这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的....

不过笔者在做完后发现了一些问题,在原文的后面进行了说明。

中文题目,就不翻大意了,直接给原题:

  一个无向连通图,顶点从1编号到N,边从1编号到M。

  小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。

  现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

  输出最小的总分期望值。

Solution:

  这题贪心很明显,哪条边走过次数的期望最大,它就应该获得最小的编号。

  所以假设我们已经求出了每条边走过的期望,我们就可以给它们并编上号了。

  怎么算出每条边走过的期望呢?

  每条边连接着两个点u,v,很明显的,当我们经过这条边,一定是从两个点中的某一个进入。

  所以走过边l的期望=走过u点的期望次数*从u点走到l上的概率+走过v点的期望次数*从v点走到l上的概率 (其中从i点走到它连接边的概率为1/d[i],d[i]为i的度数)

  即:E[l]=e[u]/d[u]+e[v]/d[v]

  可是我们只知道e[n]=0。但我们还知道这些点之间哪些是连通的,从而可以得出它们之间的关系:

  BZOJ 3143 HNOI2013 游走 高斯消元 期望

  我们就可以利用这些点之间的关系建立起方程组,从而使用高斯消元求解。

  别忘了,点求解完还要带回到每条边上去哦....

  

  附Bzoj上的AC代码(codevs上过不了...我也不知道为什么...)

  

 /*
Problem : Bzoj 3143 概率 & 高斯消元
Author : Robert Yuan
Memory : 15604 kb
Time : 628 MS
Result : Accept
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> using namespace std; #define maxn 520 struct Node{
int data,next;
}node[maxn*maxn<<]; struct Edge{
int u,v;
double w;
}edge[maxn*maxn<<]; #define now node[point].data
#define then node[point].next int n,m,cnt;
int head[maxn],deg[maxn];
const double eps=1e-;
double w[maxn][maxn],rec_x[maxn],ans; bool cmp(const Edge A,const Edge B){
return A.w>B.w;
} inline int in(){
int x=;char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return x;
} void add(int u,int v){
node[++cnt].data=v;node[cnt].next=head[u];deg[u]++;head[u]=cnt;
node[++cnt].data=u;node[cnt].next=head[v];deg[v]++;head[v]=cnt;
} void prework(){
n=in();m=in();
int u,v;
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<=m;i++)
u=in(),v=in(),edge[i].u=u,edge[i].v=v,add(u,v);
int point;
for(int i=;i<=n;i++){
w[i][i]=;
point=head[i];
while(point!=-){
w[i][now]=-(double)/deg[now];
point=then;
}
}
w[][n+]=;
} void Swap(int i,int j,int x){
double t;
for(int k=x+;k<=n+;k++)
t=w[i][k],w[i][k]=w[j][k],w[j][k]=t;
} void gauss(){
int i,j;
for(i=,j=;i<=n && j<=n;i++,j++){
int max_r=i;
for(int k=i+;k<=n;k++)
if(fabs(w[max_r][j])+eps<fabs(w[k][j]))
max_r=k;
if(fabs(w[max_r][j])<eps){i--;continue;}
if(max_r!=i) Swap(i,max_r,j);
for(int k=i+;k<=n;k++){
double rate=w[k][j]/w[i][j];
w[k][j]=;
for(int l=j+;l<=n+;l++)
w[k][l]-=w[i][l]*rate;
}
} for(int i=n;i>=;i--)
if(fabs(w[i][i])>eps){
double ans_c=w[i][n+];
for(int k=i+;k<=n;k++)
ans_c-=w[i][k]*rec_x[k];
rec_x[i]=ans_c/w[i][i];
}
} void mainwork(){
gauss();
for(int i=;i<=m;i++){
edge[i].w=rec_x[edge[i].u]/deg[edge[i].u]+rec_x[edge[i].v]/deg[edge[i].v];
}
sort(edge+,edge+m+,cmp);
for(int i=;i<=m;i++)
ans+=edge[i].w*i;
printf("%.3lf",ans);
} int main(){
#ifndef ONLINE_JUDGE
freopen("x.in","r",stdin);
#endif
prework();
mainwork();
return ;
}

[以下是笔者后来发现的问题]

  首先感谢某位不愿意透露姓名的人堆同学复制了我的代码,然后代入了样例,结果:

  BZOJ 3143 HNOI2013 游走 高斯消元 期望

  然后第三行是无解?可是答案却能跑出来...于是我傻了...开始胡乱吹逼[毕竟这么久没打了...]

  

  好吧,然后各种逼都被打败了...(●—●)

  只能认真看看到底出了什么问题,于是发现这个式子有奥妙:

  BZOJ 3143 HNOI2013 游走 高斯消元 期望

  左边的e[i]表示走到i点的期望,右边的e[j]表示走出j点的期望。

  “走到”和“走出”却并不是一样的!

  我们设e[i]表示走到i点的概率,e'[i]表示走出i点的概率。

  如果说i!=n那么走到就能走出,e[i]=e'[i];

  如果i==n那么就有e'[n]=0,e[n]=1他们俩不同...尽管都已知,而我们列式子的时候,将e'[n]作为未知数带进别的点的式子里,但在n自己的式子中却用的是e[n],导致两个变量混淆。

  所以鉴于e'[n]=0,就将建立方程部分修改了一下:

  BZOJ 3143 HNOI2013 游走 高斯消元 期望

  于是现在的式子就发生了变化,最后化出来的矩阵也变成了正常的样子:

  BZOJ 3143 HNOI2013 游走 高斯消元 期望

  这样解出来的就是e[n]是到达n点的期望=1,当然在给边设定权值的时候,我们用的都是e'[i],所以我们手动修改一下e'[n]=0就好了...

  下面是修改过后的代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm> using namespace std; #define maxn 520 struct Node{
int data,next;
}node[maxn*maxn<<]; struct Edge{
int u,v;
double w;
}edge[maxn*maxn<<]; #define now node[point].data
#define then node[point].next int n,m,cnt;
int head[maxn],deg[maxn];
const double eps=1e-;
double w[maxn][maxn],rec_x[maxn],ans; bool cmp(const Edge A,const Edge B){
return A.w>B.w;
} inline int in(){
int x=;char ch=getchar();
while(ch>'' || ch<'') ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return x;
} void add(int u,int v){
node[++cnt].data=v;node[cnt].next=head[u];deg[u]++;head[u]=cnt;
node[++cnt].data=u;node[cnt].next=head[v];deg[v]++;head[v]=cnt;
} void prework(){
n=in();m=in();
int u,v;
for(int i=;i<=n;i++) head[i]=-;
for(int i=;i<=m;i++)
u=in(),v=in(),edge[i].u=u,edge[i].v=v,add(u,v);
int point;
for(int i=;i<=n;i++){
w[i][i]=;
point=head[i];
while(point!=-){
if(now!=n) w[i][now]=-(double)/deg[now];
else w[i][now]=;
point=then;
}
}
w[][n+]=;
} void Swap(int i,int j,int x){
double t;
for(int k=x+;k<=n+;k++)
t=w[i][k],w[i][k]=w[j][k],w[j][k]=t;
} void gauss(){
int i,j;
for(i=,j=;i<=n && j<=n;i++,j++){
int max_r=i;
for(int k=i+;k<=n;k++)
if(fabs(w[max_r][j])+eps<fabs(w[k][j]))
max_r=k;
if(fabs(w[max_r][j])<eps){i--;continue;}
if(max_r!=i) Swap(i,max_r,j);
for(int k=i+;k<=n;k++){
double rate=w[k][j]/w[i][j];
w[k][j]=;
for(int l=j+;l<=n+;l++)
w[k][l]-=w[i][l]*rate;
}
} for(int i=n;i>=;i--)
if(fabs(w[i][i])>eps){
double ans_c=w[i][n+];
for(int k=i+;k<=n;k++)
ans_c-=w[i][k]*rec_x[k];
rec_x[i]=ans_c/w[i][i];
}
rec_x[n]=;
} void mainwork(){
gauss();
for(int i=;i<=m;i++){
edge[i].w=rec_x[edge[i].u]/deg[edge[i].u]+rec_x[edge[i].v]/deg[edge[i].v];
}
sort(edge+,edge+m+,cmp);
for(int i=;i<=m;i++)
ans+=edge[i].w*i;
printf("%.3lf",ans);
} int main(){
#ifndef ONLINE_JUDGE
freopen("x.in","r",stdin);
#endif
prework();
mainwork();
return ;
}

最后再次鸣谢人堆同学提出的问题,有问题才有进步嘛,欢迎大家提问哦...

上一篇:ACdrea 1217---Cracking' RSA(高斯消元)


下一篇:laravel5.5 when()的用法