前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子。现在假设读者已经懂得了使用CNTK的基本方法。现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型。
递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种):
不同于普通的神经网络,RNN假设样例之间并不是独立的。例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,那么很可能是在说“上班”; 如果之前出前过“家乡”,那么很可能就是“上海”。 RNN就可以很好的学习出时序的特征。简单的说,RNN把前一时刻的隐层的值也作为一类feature,作为下一时刻输入的一部分。
我们这里构建这样一种language model:给定一个单词,预测下一个可能出现的单词。
这个RNN的输入是dim维的,dim等于词汇量的大小。输入向量只有在代表这个单词的分量上是1,其余为0,即[0,0,0,...0,1,0,...0]。 输出也是dim维的向量,表示每个单词出现的概率。
CNTK上构建RNN模型,主要有两点与普通的神经网络很不一样:
(1)输入格式。 此时输入的是按句子分开的文本,同一个句子内部的单词是有顺序的。所以输入要指定成 LMSequenceReader 的格式。 这个格式很麻烦(再吐槽一下,我也不是很懂,就不详细解释了,大家可以按照格式自行领悟)
(2) 模型:要使用递归模型。 主要是Delay() 函数的使用
一个可用的代码如下(再次被官方教程坑了好久,现代码改编自 CNTK-2016-02-08-Windows-64bit-CPU-Only\cntk\Examples\Text\PennTreebank\Config ):
# Parameters can be overwritten on the command line
# for example: cntk configFile=myConfigFile RootDir=../..
# For running from Visual Studio add
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
RootDir = ".." ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models" # deviceId=- for CPU, >= for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
deviceId = "-1" command = writeWordAndClassInfo:train
#command = write precision = "float"
traceLevel =
modelPath = "$ModelDir$/rnn.dnn" # uncomment the following line to write logs to a file
stderr=$OutputDir$/rnnOutput type = double
numCPUThreads = confVocabSize =
confClassSize = #trainFile = "ptb.train.txt"
trainFile = "review_tokens_split_first5w_lines.txt"
#validFile = "ptb.valid.txt"
testFile = "review_tokens_split_first10_lines.txt" writeWordAndClassInfo = [
action = "writeWordAndClass"
inputFile = "$DataDir$/$trainFile$"
outputVocabFile = "$ModelDir$/vocab.txt"
outputWord2Cls = "$ModelDir$/word2cls.txt"
outputCls2Index = "$ModelDir$/cls2idx.txt"
vocabSize = "$confVocabSize$"
nbrClass = "$confClassSize$"
cutoff =
printValues = true
] #######################################
# TRAINING CONFIG #
####################################### train = [
action = "train"
minibatchSize =
traceLevel =
epochSize =
recurrentLayer =
defaultHiddenActivity = 0.1
useValidation = true
rnnType = "CLASSLM" # uncomment below and comment SimpleNetworkBuilder section to use NDL to train RNN LM
NDLNetworkBuilder=[
networkDescription="D:\tools\Deep Learning\CNTK-2016-02-08-Windows-64bit-CPU-Only\cntk\Examples\Text\PennTreebank\AdditionalFiles\RNNLM\rnnlm.ndl"
] SGD = [
learningRatesPerSample = 0.1
momentumPerMB =
gradientClippingWithTruncation = true
clippingThresholdPerSample = 15.0
maxEpochs =
unroll = false
numMBsToShowResult =
gradUpdateType = "none"
loadBestModel = true # settings for Auto Adjust Learning Rate
AutoAdjust = [
autoAdjustLR = "adjustAfterEpoch"
reduceLearnRateIfImproveLessThan = 0.001
continueReduce = false
increaseLearnRateIfImproveMoreThan =
learnRateDecreaseFactor = 0.5
learnRateIncreaseFactor = 1.382
numMiniBatch4LRSearch =
numPrevLearnRates =
numBestSearchEpoch =
] dropoutRate = 0.0
] reader = [
readerType = "LMSequenceReader"
randomize = "none"
nbruttsineachrecurrentiter = # word class info
wordclass = "$ModelDir$/vocab.txt" # if writerType is set, we will cache to a binary file
# if the binary file exists, we will use it instead of parsing this file
# writerType=BinaryReader # write definition
wfile = "$OutputDir$/sequenceSentence.bin" # wsize - inital size of the file in MB
# if calculated size would be bigger, that is used instead
wsize = # wrecords - number of records we should allocate space for in the file
# files cannot be expanded, so this should be large enough. If known modify this element in config before creating file
wrecords = # windowSize - number of records we should include in BinaryWriter window
windowSize = "$confVocabSize$" file = "$DataDir$/$trainFile$" # additional features sections
# for now store as expanded category data (including label in)
features = [
# sentence has no features, so need to set dimension to zero
dim =
# write definition
sectionType = "data"
] # sequence break table, list indexes into sequence records, so we know when a sequence starts/stops
sequence = [
dim =
wrecords =
# write definition
sectionType = "data"
] #labels sections
labelIn = [
dim =
labelType = "Category"
beginSequence = "</s>"
endSequence = "</s>" # vocabulary size
labelDim = "$confVocabSize$"
labelMappingFile = "$OutputDir$/sentenceLabels.txt" # Write definition
# sizeof(unsigned) which is the label index type
elementSize =
sectionType = "labels"
mapping = [
# redefine number of records for this section, since we don't need to save it for each data record
wrecords =
# variable size so use an average string size
elementSize =
sectionType = "labelMapping"
] category = [
dim =
# elementSize = sizeof(ElemType) is default
sectionType = "categoryLabels"
]
] # labels sections
labels = [
dim =
labelType = "NextWord"
beginSequence = "O"
endSequence = "O" # vocabulary size
labelDim = "$confVocabSize$"
labelMappingFile = "$OutputDir$/sentenceLabels.out.txt" # Write definition
# sizeof(unsigned) which is the label index type
elementSize =
sectionType = "labels"
mapping = [
# redefine number of records for this section, since we don't need to save it for each data record
wrecords =
# variable size so use an average string size
elementSize =
sectionType = "labelMapping"
] category = [
dim =
# elementSize = sizeof(ElemType) is default
sectionType = categoryLabels
]
]
]
] write = [
action = "write" outputPath = "$OutputDir$/Write"
#outputPath = "-" # "-" will write to stdout; useful for debugging
outputNodeNames = "Out,WFeat2Hid,WHid2Hid,WHid2Word" # when processing one sentence per minibatch, this is the sentence posterior
#format = [
#sequencePrologue = "log P(W)=" # (using this to demonstrate some formatting strings)
#type = "real"
#] minibatchSize = # choose this to be big enough for the longest sentence
# need to be small since models are updated for each minibatch
traceLevel =
epochSize = reader = [
# reader to use
readerType = "LMSequenceReader"
randomize = "none" # BUGBUG: This is ignored.
nbruttsineachrecurrentiter = # one sentence per minibatch
cacheBlockSize = # workaround to disable randomization # word class info
wordclass = "$ModelDir$/vocab.txt" # if writerType is set, we will cache to a binary file
# if the binary file exists, we will use it instead of parsing this file
# writerType = "BinaryReader" # write definition
wfile = "$OutputDir$/sequenceSentence.bin"
# wsize - inital size of the file in MB
# if calculated size would be bigger, that is used instead
wsize = # wrecords - number of records we should allocate space for in the file
# files cannot be expanded, so this should be large enough. If known modify this element in config before creating file
wrecords = # windowSize - number of records we should include in BinaryWriter window
windowSize = "$confVocabSize$" file = "$DataDir$/$testFile$" # additional features sections
# for now store as expanded category data (including label in)
features = [
# sentence has no features, so need to set dimension to zero
dim =
# write definition
sectionType = "data"
] #labels sections
labelIn = [
dim = # vocabulary size
labelDim = "$confVocabSize$"
labelMappingFile = "$OutputDir$/sentenceLabels.txt" labelType = "Category"
beginSequence = "</s>"
endSequence = "</s>" # Write definition
# sizeof(unsigned) which is the label index type
elementSize =
sectionType = "labels" mapping = [
# redefine number of records for this section, since we don't need to save it for each data record
wrecords =
# variable size so use an average string size
elementSize =
sectionType = "labelMapping"
] category = [
dim =
# elementSize = sizeof(ElemType) is default
sectionType = "categoryLabels"
]
] #labels sections
labels = [
dim =
labelType = "NextWord"
beginSequence = "O"
endSequence = "O" # vocabulary size
labelDim = "$confVocabSize$" labelMappingFile = "$OutputDir$/sentenceLabels.out.txt"
# Write definition
# sizeof(unsigned) which is the label index type
elementSize =
sectionType = "labels" mapping = [
# redefine number of records for this section, since we don't need to save it for each data record
wrecords =
# variable size so use an average string size
elementSize =
sectionType = "labelMapping"
] category = [
dim =
# elementSize = sizeof(ElemType) is default
sectionType = "categoryLabels"
]
]
]
]
rnnlm.ndl:
run=ndlCreateNetwork ndlCreateNetwork=[
# vocabulary size
featDim=
# vocabulary size
labelDim=
# hidden layer size
hiddenDim=
# number of classes
nbrClass= initScale= features=SparseInput(featDim, tag="feature") # labels in classbasedCrossEntropy is dense and contain values for each sample
labels=Input(, tag="label") # define network
WFeat2Hid=Parameter(hiddenDim, featDim, init="uniform", initValueScale=initScale)
WHid2Hid=Parameter(hiddenDim, hiddenDim, init="uniform", initValueScale=initScale) # WHid2Word is special that it is hiddenSize X labelSize
WHid2Word=Parameter( hiddenDim,labelDim, init="uniform", initValueScale=initScale)
WHid2Class=Parameter(nbrClass, hiddenDim, init="uniform", initValueScale=initScale) PastHid = Delay(hiddenDim, HidAfterSig, delayTime=, needGradient=true)
HidFromHeat = Times(WFeat2Hid, features)
HidFromRecur = Times(WHid2Hid, PastHid)
HidBeforeSig = Plus(HidFromHeat, HidFromRecur)
HidAfterSig = Sigmoid(HidBeforeSig) Out = TransposeTimes(WHid2Word, HidAfterSig) #word part ClassProbBeforeSoftmax=Times(WHid2Class, HidAfterSig) cr = ClassBasedCrossEntropyWithSoftmax(labels, HidAfterSig, WHid2Word, ClassProbBeforeSoftmax, tag="criterion")
EvalNodes=(Cr)
OutputNodes=(Cr)
]
从代码上看,CNTK会让人花很大一部分精力在Data Reader上。
writeWordAndClassInfo 是简单的对所有词汇做个统计,并对单词聚类。 这里用的class based RNN,主要是为了加速计算,先把单词分成不相交的几类。 这个模块输出的文件有4列,分别是单词索引,出现频率,单词,类别。
Train 当然就是训练模型了,文本量大的话,训练还是很慢的。
Write 是输出模块,注意看这一行: outputNodeNames = "Out,WFeat2Hid,WHid2Hid,WHid2Word"
我想最多人关心的应该是对于一个句子,运行这个训练好的RNN之后,如何得到隐层的值吧? 我的做法是把训练好的RNN的参数给保存下来,然后...然后无论是用java还是用python的人,都能根据这个参数还原一个RNN网络,然后我们想干嘛就能干嘛了。
Train中我是用了自己定义的模型:NDLNetworkBuilder 。 也可以用通用的递归模型,此时只要简单地规定一个参数就行了,例如
SimpleNetworkBuilder=[
trainingCriterion=classcrossentropywithsoftmax
evalCriterion=classcrossentropywithsoftmax
nodeType=Sigmoid
initValueScale=6.0
layerSizes=::
addPrior=false
addDropoutNodes=false
applyMeanVarNorm=false
uniformInit=true; # these are for the class information for class-based language modeling
vocabSize=
nbrClass=
]
我这里使用自己定义的网络,主要是为了日后想改成LSTM结构。
原创博客,未经允许,请勿转载。