https://www.kaggle.com/kakauandme/tensorflow-deep-nn
本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接
import numpy as np
import pandas as pd
import tensorflow
# settings
LEARNING_RATE = 1e-4
# set to 20000 on local environment to get 0.99 accuracy
TRAINING_ITERATIONS = 20000
DROPOUT = 0.5
BATCH_SIZE = 50
# set to 0 to train on all available data
VALIDATION_SIZE = 2000
# image number to output
IMAGE_TO_DISPLAY = 10
# read training data from CSV file
data = pd.read_csv('D://kaggle//DigitRecognizer//data//train.csv')
images = data.iloc[:,1:].values
images = images.astype(np.float)
# convert from [0:255] => [0.0:1.0]
images = np.multiply(images, 1.0 / 255.0)
image_size = images.shape[1]
print ('image_size => {0}'.format(image_size))
# in this case all images are square
image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)
print ('image_width => {0}\nimage_height => {1}'.format(image_width,image_height))
labels_flat = data.iloc[:,0].values
print('labels_flat({0})'.format(len(labels_flat)))
print ('labels_flat[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels_flat[IMAGE_TO_DISPLAY]))
labels_count = np.unique(labels_flat).shape[0]
print('labels_count => {0}'.format(labels_count))
def dense_to_one_hot(labels_dense, num_classes):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)
print('labels({0[0]},{0[1]})'.format(labels.shape))
print ('labels[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels[IMAGE_TO_DISPLAY]))
# split data into training & validation
validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]
train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]
print('train_images({0[0]},{0[1]})'.format(train_images.shape))
print('validation_images({0[0]},{0[1]})'.format(validation_images.shape))
# weight initialization
def weight_variable(shape):
initial = tensorflow.truncated_normal(shape, stddev=0.1)
return tensorflow.Variable(initial)
def bias_variable(shape):
initial = tensorflow.constant(0.1, shape=shape)
return tensorflow.Variable(initial)
# convolution
def conv2d(x, W):
return tensorflow.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# pooling
# [[0,3],
# [4,2]] => 4
# [[0,1],
# [1,1]] => 1
def max_pool_2x2(x):
return tensorflow.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# input & output of NN
# images
x = tensorflow.placeholder('float', shape=[None, image_size])
# labels
y_ = tensorflow.placeholder('float', shape=[None, labels_count])
# first convolutional layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# (40000,784) => (40000,28,28,1)
image = tensorflow.reshape(x, [-1,image_width , image_height,1])
#print (image.get_shape()) # =>(40000,28,28,1)
h_conv1 = tensorflow.nn.relu(conv2d(image, W_conv1) + b_conv1)
#print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
h_pool1 = max_pool_2x2(h_conv1)
#print (h_pool1.get_shape()) # => (40000, 14, 14, 32)
# Prepare for visualization
# display 32 fetures in 4 by 8 grid
layer1 = tensorflow.reshape(h_conv1, (-1, image_height, image_width, 4 ,8))
# reorder so the channels are in the first dimension, x and y follow.
layer1 = tensorflow.transpose(layer1, (0, 3, 1, 4,2))
layer1 = tensorflow.reshape(layer1, (-1, image_height*4, image_width*8))
# second convolutional layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tensorflow.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
#print (h_conv2.get_shape()) # => (40000, 14,14, 64)
h_pool2 = max_pool_2x2(h_conv2)
#print (h_pool2.get_shape()) # => (40000, 7, 7, 64)
# Prepare for visualization
# display 64 fetures in 4 by 16 grid
layer2 = tensorflow.reshape(h_conv2, (-1, 14, 14, 4 ,16))
# reorder so the channels are in the first dimension, x and y follow.
layer2 = tensorflow.transpose(layer2, (0, 3, 1, 4,2))
layer2 = tensorflow.reshape(layer2, (-1, 14*4, 14*16))
# densely connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
# (40000, 7, 7, 64) => (40000, 3136)
h_pool2_flat = tensorflow.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tensorflow.nn.relu(tensorflow.matmul(h_pool2_flat, W_fc1) + b_fc1)
#print (h_fc1.get_shape()) # => (40000, 1024)
# dropout
keep_prob = tensorflow.placeholder('float')
h_fc1_drop = tensorflow.nn.dropout(h_fc1, keep_prob)
# readout layer for deep net
W_fc2 = weight_variable([1024, labels_count])
b_fc2 = bias_variable([labels_count])
y = tensorflow.nn.softmax(tensorflow.matmul(h_fc1_drop, W_fc2) + b_fc2)
#print (y.get_shape()) # => (40000, 10)
# cost function
cross_entropy = -tensorflow.reduce_sum(y_*tensorflow.log(y))
# optimisation function
train_step = tensorflow.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy)
# evaluation
correct_prediction = tensorflow.equal(tensorflow.argmax(y,1),tensorflow.argmax(y_,1))
accuracy = tensorflow.reduce_mean(tensorflow.cast(correct_prediction, 'float'))
# prediction function
#[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
predict = tensorflow.argmax(y,1)
epochs_completed = 0
index_in_epoch = 0
num_examples = train_images.shape[0]
# serve data by batches
def next_batch(batch_size):
global train_images
global train_labels
global index_in_epoch
global epochs_completed
start = index_in_epoch
index_in_epoch += batch_size
# when all trainig data have been already used, it is reorder randomly
if index_in_epoch > num_examples:
# finished epoch
epochs_completed += 1
# shuffle the data
perm = np.arange(num_examples)
np.random.shuffle(perm)
train_images = train_images[perm]
train_labels = train_labels[perm]
# start next epoch
start = 0
index_in_epoch = batch_size
assert batch_size <= num_examples
end = index_in_epoch
return train_images[start:end], train_labels[start:end]
# start TensorFlow session
init = tensorflow.initialize_all_variables()
sess = tensorflow.InteractiveSession()
sess.run(init)
# visualisation variables
train_accuracies = []
validation_accuracies = []
x_range = []
display_step=1
for i in range(TRAINING_ITERATIONS):
#get new batch
batch_xs, batch_ys = next_batch(BATCH_SIZE)
# check progress on every 1st,2nd,...,10th,20th,...,100th... step
if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS:
train_accuracy = accuracy.eval(feed_dict={x:batch_xs,
y_: batch_ys,
keep_prob: 1.0})
if(VALIDATION_SIZE):
validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE],
y_: validation_labels[0:BATCH_SIZE],
keep_prob: 1.0})
print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i))
validation_accuracies.append(validation_accuracy)
else:
print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
train_accuracies.append(train_accuracy)
x_range.append(i)
# increase display_step
if i%(display_step*10) == 0 and i:
display_step *= 10
# train on batch
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT})
# read test data from CSV file
test_images = pd.read_csv('D://kaggle//DigitRecognizer//data//test.csv').values
test_images = test_images.astype(np.float)
# convert from [0:255] => [0.0:1.0]
test_images = np.multiply(test_images, 1.0 / 255.0)
print('test_images({0[0]},{0[1]})'.format(test_images.shape))
# predict test set
#predicted_lables = predict.eval(feed_dict={x: test_images, keep_prob: 1.0})
# using batches is more resource efficient
predicted_lables = np.zeros(test_images.shape[0])
for i in range(0,test_images.shape[0]//BATCH_SIZE):
predicted_lables[i*BATCH_SIZE : (i+1)*BATCH_SIZE] = predict.eval(feed_dict={x: test_images[i*BATCH_SIZE : (i+1)*BATCH_SIZE],
keep_prob: 1.0})
print('predicted_lables({0})'.format(len(predicted_lables)))
# output test image and prediction
# display(test_images[IMAGE_TO_DISPLAY])
print ('predicted_lables[{0}] => {1}'.format(IMAGE_TO_DISPLAY,predicted_lables[IMAGE_TO_DISPLAY]))
# save results
np.savetxt('D://kaggle//DigitRecognizer//submission_softmax.csv',
np.c_[range(1,len(test_images)+1),predicted_lables],
delimiter=',',
header = 'ImageId,Label',
comments = '',
fmt='%d')
layer1_grid = layer1.eval(feed_dict={x: test_images[IMAGE_TO_DISPLAY:IMAGE_TO_DISPLAY+1], keep_prob: 1.0})
sess.close()