1.手写数字数据集
- from sklearn.datasets import load_digits
- digits = load_digits()
2.图片数据预处理
- x:归一化MinMaxScaler()
- y:独热编码OneHotEncoder()或to_categorical
- 训练集测试集划分
- 张量结构
3.设计卷积神经网络结构
- 绘制模型结构图,并说明设计依据。
#设计卷积神经网络结构 model = Sequential() ks = (3, 3) # 卷积核的大小 input_shape = x_train.shape[1:] model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))# 一层卷积,padding='same',tensorflow会对输入自动补0 model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1 model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接 model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积 model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2 model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积 model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积 model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3 model.add(Dropout(0.25)) model.add(Flatten())# 平坦层 model.add(Dense(128, activation='relu'))# 全连接层 model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax'))# 激活函数softmax model.summary()
4.模型训练
5.模型评价
- model.evaluate()
- 交叉表与交叉矩阵
- pandas.crosstab
- seaborn.heatmap
# 模型评价 score = model.evaluate(x_test, y_test) print('score:', score) y_pred = model.predict_classes(x_test) print('y_pred:', y_pred[:10]) # 交叉表与交叉矩阵 y_test1 = np.argmax(y_test, axis=1).reshape(-1) y_true = np.array(y_test1)[0] # 交叉表查看预测数据与原数据对比 pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict']) # 交叉矩阵 y_test1 = y_test1.tolist()[0] a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict']) df = pd.DataFrame(a) sns.heatmap(df, annot=True, cmap="YlGnBu", linewidths=0.2, linecolor='G') plt.show()