Data structure alignment is the way data is arranged and accessed in computer memory. It consists of three separate but related issues: data alignment, data structure padding, and packing. --wikipeida
The following typical alignments are valid for compilers from Microsoft (Visual C++), Borland/CodeGear (C++Builder), Digital Mars (DMC), and GNU (GCC) when compiling for 32-bit x86:
A char (one byte) will be 1-byte aligned.
A short (two bytes) will be 2-byte aligned.
An int (four bytes) will be 4-byte aligned.
A long (four bytes) will be 4-byte aligned.
A float (four bytes) will be 4-byte aligned.
A double (eight bytes) will be 8-byte aligned on Windows and 4-byte aligned on Linux (8-byte with -malign-double compile time option).
A long long (eight bytes) will be 4-byte aligned.
A long double (ten bytes with C++Builder and DMC, eight bytes with Visual C++, twelve bytes with GCC) will be 8-byte aligned with C++Builder, 2-byte aligned with DMC, 8-byte aligned with Visual C++, and 4-byte aligned with GCC.
Any pointer (four bytes) will be 4-byte aligned. (e.g.: char, int)
The only notable differences in alignment for an LP64 64-bit system when compared to a 32-bit system are:
A long (eight bytes) will be 8-byte aligned.
A double (eight bytes) will be 8-byte aligned.
A long long (eight bytes) will be 8-byte aligned.
A long double (eight bytes with Visual C++, sixteen bytes with GCC) will be 8-byte aligned with Visual C++ and 16-byte aligned with GCC.
Any pointer (eight bytes) will be 8-byte aligned.
Example
struct MixedData
{
char Data1;
short Data2;
int Data3;
char Data4;
};
After compiled:
struct MixedData /* After compilation in 32-bit x86 machine */
{
char Data1; /* 1 byte */
char Padding1[1]; /* 1 byte for the following 'short' to be aligned on a 2 byte boundary
assuming that the address where structure begins is an even number */
short Data2; /* 2 bytes */
int Data3; /* 4 bytes - largest structure member */
char Data4; /* 1 byte */
char Padding2[3]; /* 3 bytes to make total size of the structure 12 bytes */
};