前言
双色球是中国福利彩票的一种玩法。
红球一共6组,每组从1-33中抽取一个,六个互相不重复。然后蓝球是从1-16中抽取一个数字,这整个组成的双色球
python从零基础入门到实战
今天,我们就用Python来统计一下各号码的中奖概率,并可视化展示。我本人,也会买概率最大的几个号码试试,中奖的话,我就删号,并开始朴实无华有钱人的生活!!!
先是数据的来源,采集双色球往期中奖数据
发送求情
import requests # 数据请求 # 发送请求的url地址
url = 'http://www.cwl.gov.cn/cwl_admin/kjxx/findDrawNotice' params = {
'name': 'ssq',
'issueCount': '',
'issueStart': '',
'issueEnd': '',
'dayStart': '2017-10-24',
'dayEnd': '2021-08-04',
'pageNo': page,
}
headers = {
'Referer': 'http://www.cwl.gov.cn/kjxx/ssq/kjgg/',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
response = requests.get(url=url, params=params, headers=headers)
# <> 对象 200 请求成功 状态码
解析数据,for遍历
for index in result:
dit = {
'期号': index['code'],
'开奖日期': index['date'],
'红球': index['red'],
'蓝球': index['blue'],
'一等奖中奖注数': index['prizegrades'][0]['typenum'],
'一等奖中奖金额': index['prizegrades'][0]['typemoney'],
'二等奖中奖注数': index['prizegrades'][1]['typenum'],
'二等奖中奖金额': index['prizegrades'][1]['typemoney'],
'三等奖中奖注数': index['prizegrades'][2]['typenum'],
'三等奖中奖金额': index['prizegrades'][2]['typemoney'],
'四等奖中奖注数': index['prizegrades'][3]['typenum'],
'四等奖中奖金额': index['prizegrades'][3]['typemoney'],
'五等奖中奖注数': index['prizegrades'][4]['typenum'],
'五等奖中奖金额': index['prizegrades'][4]['typemoney'],
'六等奖中奖注数': index['prizegrades'][5]['typenum'],
'六等奖中奖金额': index['prizegrades'][5]['typemoney'],
'一等奖中奖地区': index['content'],
'奖池金额': index['poolmoney']
}
保存数据
import csv # 内置模块 f = open('双色球.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['期号',
'开奖日期',
'红球',
'蓝球',
'一等奖中奖注数',
'一等奖中奖金额',
'二等奖中奖注数',
'二等奖中奖金额',
'三等奖中奖注数',
'三等奖中奖金额',
'四等奖中奖注数',
'四等奖中奖金额',
'五等奖中奖注数',
'五等奖中奖金额',
'六等奖中奖注数',
'六等奖中奖金额',
'一等奖中奖地区',
'奖池金额']) csv_writer.writeheader() # 写入表头
csv_writer.writerow(dit)
print(dit)
运行代码,这样就得到了往期双色球的数据了
现在开始,我们来分析这些数据
先导入需要用到的模块
import pandas as pd
from pyecharts.charts import *
from sklearn.linear_model import LogisticRegression
读取采集到的表格数据
data = pd.read_csv('双色球.csv',encoding='utf-8', engine='python')
data.head()
取数据,指定训练集和测试集
def get_lotto_data(data, lotto, lotto_id):
data['lotto_id'] = lotto_id
X = []
Y = []
# 标签and值
for s, p in zip(data['lotto_id'], data[lotto]):
X.append([float(s)])
Y.append(float(p))
return X, Y
建立线性回归模型
def linear_model_test(X, Y, predict_value):
regr = LogisticRegression()
regr.fit(X, Y)
predict_outcome = regr.predict(predict_value)
predictions = {}
predictions['intercept'] = regr.intercept_
predictions['coefficient'] = regr.coef_
predictions['predicted_value'] = predict_outcome
return predictions
使用线性回归推测中奖号码
def get_predicted_num(file, lotto, lotto_id):
X, Y = get_lotto_data(file, lotto, lotto_id)
predict_value = [[33]]
result = linear_model_test(X, Y, predict_value)
if lotto_id < 7:
print(f'中奖第{lotto_id}个红球为:', result['predicted_value'].astype('int64'), '号球')
else:
print('中奖蓝球为:', result['predicted_value'].astype('int64'), '号球')
预测结果
get_predicted_num(data, 'r1', 1) # 预测红1
get_predicted_num(data, 'r2', 2) # 预测红2
get_predicted_num(data, 'r3', 3) # 预测红3
get_predicted_num(data, 'r4', 4) # 预测红4
get_predicted_num(data, 'r5', 5) # 预测红5
get_predicted_num(data, 'r6', 6) # 预测红6
get_predicted_num(data, '蓝球', 7) # 预测蓝7
可视化展示
红球中奖概率分布图
x = red_ball_count.index.tolist()
y = red_ball_count.values.tolist()
# 可视化展示
pie = (
Pie()
.add(""
,[list(z) for z in zip(x, y)]
)
)
pie.render_notebook()
蓝球中奖概率分布图
x = blue_ball_count.index.tolist()
y = blue_ball_count.values.tolist()
pie = (
Pie()
.add(""
,[list(z) for z in zip(x, y)]
)
)
pie.render_notebook()
蓝球中奖次数分布
from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import SymbolType c = (
PictorialBar()
.add_xaxis(x)
.add_yaxis(
"",
y,
label_opts=opts.LabelOpts(is_show=False),
symbol_size=18,
symbol_repeat="fixed",
symbol_offset=[0, 0],
is_symbol_clip=True,
)
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title='蓝球中奖号码'),
xaxis_opts=opts.AxisOpts(is_show=False),
yaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(opacity=0)
),
),
)
)
c.render_notebook()
中奖注数漏斗图
x_data = df['中奖注数'].index.tolist()
y_data = df['中奖注数'].values.tolist() c = (
Funnel()
.add(
"中奖注数漏斗图",
[list(z) for z in zip(x_data, y_data)],
label_opts=opts.LabelOpts(position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="中奖注数漏斗图"))
)
c.render_notebook()
很真实,基数太大,一、二等奖的中奖数都看不见了