突破python缺陷,实现几种自定义线程池 以及进程、线程、协程的介绍

Python线程

Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time
  
def show(arg):
    time.sleep(1)
    print 'thread'+str(arg)
  
for i in range(10):
    t = threading.Thread(target=show, args=(i,))
    t.start()
  
print 'main thread stop'

  

上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

更多方法:

  • start            线程准备就绪,等待CPU调度
  • setName      为线程设置名称
  • getName      获取线程名称
  • setDaemon   设置为后台线程或前台线程(默认)
                       如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止
                        如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
  • join              逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
  • run              线程被cpu调度后自动执行线程对象的run方法

线程锁

由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。所以,可能出现如下问题:

未使用锁
#!/usr/bin/env python
#coding:utf-8
   
import threading
import time
   
gl_num = 0
   
lock = threading.RLock()
   
def Func():
    lock.acquire()
    global gl_num
    gl_num +=1
    time.sleep(1)
    print gl_num
    lock.release()
       
for i in range(10):
    t = threading.Thread(target=Func)
    t.start()

  

event

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

  • clear:将“Flag”设置为False
  • set:将“Flag”设置为True
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
import threading
 
 
def do(event):
    print 'start'
    event.wait()
    print 'execute'
 
 
event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()
 
event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
    event_obj.set()

Python 进程

from multiprocessing import Process
import threading
import time
  
def foo(i):
    print 'say hi',i
  
for i in range(10):
    p = Process(target=foo,args=(i,))
    p.start()

  

注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。

进程数据共享

进程各自持有一份数据,默认无法共享数据

进程间默认无法数据共享
#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44])
 
def Foo(i):
    temp[i] = 100+i
    for item in temp:
        print i,'----->',item
 
for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()
 
#方法二:manage.dict()共享数据
from multiprocessing import Process,Manager
 
manage = Manager()
dic = manage.dict()
 
def Foo(i):
    dic[i] = 100+i
    print dic.values()
 
for i in range(2):
    p = Process(target=Foo,args=(i,))
    p.start()
    p.join()
类型对应表

当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。

进程锁实例

进程池

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

进程池中有两个方法:

  • apply
  • apply_async
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from  multiprocessing import Process,Pool
import time
  
def Foo(i):
    time.sleep(2)
    return i+100
  
def Bar(arg):
    print arg
  
pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()
  
for i in range(10):
    pool.apply_async(func=Foo, args=(i,),callback=Bar)
  
print 'end'
pool.close()
pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。

协程

线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

greenlet

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
 
from greenlet import greenlet
 
 
def test1():
    print 12
    gr2.switch()
    print 34
    gr2.switch()
 
 
def test2():
    print 56
    gr1.switch()
    print 78
 
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

gevent

import gevent
 
def foo():
    print('Running in foo')
    gevent.sleep(0)
    print('Explicit context switch to foo again')
 
def bar():
    print('Explicit context to bar')
    gevent.sleep(0)
    print('Implicit context switch back to bar')
 
gevent.joinall([
    gevent.spawn(foo),
    gevent.spawn(bar),
])

遇到IO操作自动切换:

from gevent import monkey; monkey.patch_all()
import gevent
import urllib2 def f(url):
print('GET: %s' % url)
resp = urllib2.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url)) gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])

线程池:

方案简介:

方案一:简单版本的线程池,每次都要创建线程池;

方案二:支持传函数、传参、传回调函数、立即终止所有线程、最大优点:线程的循环利用,节省时间和资源  ★★★★★

方案三:现有模块,直接调用即可,不支持回调函数

方案一:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import threading
 
 
class ThreadPool(object):
 
    def __init__(self, max_num=20):
        self.queue = Queue.Queue(max_num)
        for i in xrange(max_num):
            self.queue.put(threading.Thread)
 
    def get_thread(self):
        return self.queue.get()
 
    def add_thread(self):
        self.queue.put(threading.Thread)
 
"""
pool = ThreadPool(10)
 
def func(arg, p):
    print arg
    import time
    time.sleep(2)
    p.add_thread()
 
 
for i in xrange(30):
    thread = pool.get_thread()
    t = thread(target=func, args=(i, pool))
    t.start()
"""

 方案二:

#!/usr/bin/env python
# -*- coding:utf-8 -*- import queue
import threading
import contextlib
import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num):
self.q = queue.Queue()
self.max_num = max_num self.terminal = False
self.generate_list = []
self.free_list = [] def run(self, func, args, callback=None):
"""
线程池执行一个任务
:param func: 任务函数
:param args: 任务函数所需参数
:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
:return: 如果线程池已经终止,则返回True否则None
""" if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
self.generate_thread()
w = (func, args, callback,)
self.q.put(w) def generate_thread(self):
"""
创建一个线程
"""
t = threading.Thread(target=self.call)
t.start() def call(self):
"""
循环去获取任务函数并执行任务函数
"""
current_thread = threading.currentThread
self.generate_list.append(current_thread) event = self.q.get()
while event != StopEvent: func, arguments, callback = event
try:
result = func(*arguments)
status = True
except Exception as e:
status = False
result = e if callback is not None:
try:
callback(status, result)
except Exception as e:
pass if self.terminal: # False
event = StopEvent
else:
with self.worker_state(self.free_list,current_thread):
event = self.q.get() else:
self.generate_list.remove(current_thread) @contextlib.contextmanager
def worker_state(self,x,v):
x.append(v)
try:
yield
finally:
x.remove(v) def close(self):
num = len(self.generate_list)
while num:
self.q.put(StopEvent)
num -= 1 # 终止线程(清空队列)
def terminate(self): self.terminal = True while self.generate_list:
self.q.put(StopEvent)
self.q.empty() import time def work(i):
time.sleep(1)
print(i) pool = ThreadPool(10)
for item in range(50):
pool.run(func=work, args=(item,)) # pool.terminate() #立即终止所有线程

方案三、

from concurrent.futures import ThreadPoolExecutor
import time def f1(a):
time.sleep(2)
print(a)
return 1 pool=ThreadPoolExecutor(5)
for i in range(30):
a=pool.submit(f1,i)
# x=a.result()#获取返回值,如果有,会阻塞
上一篇:MySQL-based databases CVE -2016-6663 本地提权


下一篇:基于Dapper的开源Lambda扩展LnskyDB 2.0已支持多表查询