LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

解题思路:

题目是这样的:给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素。另外一种更加具体的形式是,找到所有元素的中位数。本篇文章我们只讨论更加一般性的问题:如何找到两个数组中第k大的元素?不过,测试是用的两个数组的中位数的题目,Leetcode第4题 Median of Two Sorted Arrays

方案1:假设两个数组总共有n个元素,那么显然我们有用O(n)时间和O(n)空间的方法:用merge sort的思路排序,排序好的数组取出下标为k-1的元素就是我们需要的答案。
这个方法比较容易想到,但是有没有更好的方法呢?
方案2:我们可以发现,现在我们是不需要“排序”这么复杂的操作的,因为我们仅仅需要第k大的元素。我们可以用一个计数器,记录当前已经找到第m大的元素了。同时我们使用两个指针pA和pB,分别指向A和B数组的第一个元素。使用类似于merge sort的原理,如果数组A当前元素小,那么pA++,同时m++。如果数组B当前元素小,那么pB++,同时m++。最终当m等于k的时候,就得到了我们的答案——O(k)时间,O(1)空间。
但是,当k很接近于n的时候,这个方法还是很费时间的。当然,我们可以判断一下,如果k比n/2大的话,我们可以从最大的元素开始找。但是如果我们要找所有元素的中位数呢?时间还是O(n/2)=O(n)的。有没有更好的方案呢?
我们可以考虑从k入手。如果我们每次都能够剔除一个一定在第k大元素之前的元素,那么我们需要进行k次。但是如果每次我们都剔除一半呢?所以用这种类似于二分的思想,我们可以这样考虑:

Assume that the number of elements in A and B are both larger than k/2, and if we compare the k/2-th smallest element in A(i.e. A[k/2-1]) and the k-th smallest element in B(i.e. B[k/2 - 1]), there are three results:
(Becasue k can be odd or even number, so we assume k is even number here for simplicy. The following is also true when k is an odd number.)
A[k/2-1] = B[k/2-1]
A[k/2-1] > B[k/2-1]
A[k/2-1] < B[k/2-1]
if A[k/2-1] < B[k/2-1], that means all the elements from A[0] to A[k/2-1](i.e. the k/2 smallest elements in A) are in the range of k smallest elements in the union of A and B. Or, in the other word, A[k/2 - 1] can never be larger than the k-th smalleset element in the union of A and B.

Why?
We can use a proof by contradiction. Since A[k/2 - 1] is larger than the k-th smallest element in the union of A and B, then we assume it is the (k+1)-th smallest one. Since it is smaller than B[k/2 - 1], then B[k/2 - 1] should be at least the (k+2)-th smallest one. So there are at most (k/2-1) elements smaller than A[k/2-1] in A, and at most (k/2 - 1) elements smaller than A[k/2-1] in B.So the total number is k/2+k/2-2, which, no matter when k is odd or even, is surly smaller than k(since A[k/2-1] is the (k+1)-th smallest element). So A[k/2-1] can never larger than the k-th smallest element in the union of A and B if A[k/2-1]<B[k/2-1];
Since there is such an important conclusion, we can safely drop the first k/2 element in A, which are definitaly smaller than k-th element in the union of A and B. This is also true for the A[k/2-1] > B[k/2-1] condition, which we should drop the elements in B.
When A[k/2-1] = B[k/2-1], then we have found the k-th smallest element, that is the equal element, we can call it m. There are each (k/2-1) numbers smaller than m in A and B, so m must be the k-th smallest number. So we can call a function recursively, when A[k/2-1] < B[k/2-1], we drop the elements in A, else we drop the elements in B.

We should also consider the edge case, that is, when should we stop?
1. When A or B is empty, we return B[k-1]( or A[k-1]), respectively;
2. When k is 1(when A and B are both not empty), we return the smaller one of A[0] and B[0]
3. When A[k/2-1] = B[k/2-1], we should return one of them

In the code, we check if m is larger than n to garentee that the we always know the smaller array, for coding simplicy.

Java实现:

 public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length, n = nums2.length;
int k = (m + n) / 2;
if((m+n)%2==0){
return (findKth(nums1,nums2,0,0,m,n,k)+findKth(nums1,nums2,0,0,m,n,k+1))/2;
} else {
return findKth(nums1,nums2,0,0,m,n,k+1);
} } private double findKth(int[] arr1, int[] arr2, int start1, int start2, int len1, int len2, int k){
if(len1>len2){
return findKth(arr2,arr1,start2,start1,len2,len1,k);
}
if(len1==0){
return arr2[start2 + k - 1];
}
if(k==1){
return Math.min(arr1[start1],arr2[start2]);
}
int p1 = Math.min(k/2,len1) ;
int p2 = k - p1;
if(arr1[start1 + p1-1]<arr2[start2 + p2-1]){
return findKth(arr1,arr2,start1 + p1,start2,len1-p1,len2,k-p1);
} else if(arr1[start1 + p1-1]>arr2[start2 + p2-1]){
return findKth(arr1,arr2,start1,start2 + p2,len1,len2-p2,k-p2);
} else {
return arr1[start1 + p1-1];
}
}
}
上一篇:关于pl/sql数据库下拉中选项为空的问题


下一篇:test 等价 [