原子操作 Interlocked系列函数

上一篇《多线程第一次亲密接触 CreateThread与_beginthreadex本质区别》中讲到一个多线程报数功能。为了描述方便和代码简洁起见,我们可以只输出最后的报数结果来观察程序是否运行出错。这也非常类似于统计一个网站每天有多少用户登录,每个用户登录用一个线程模拟,线程运行时会将一个表示计数的变量递增。程序在最后输出计数的值表示有今天多少个用户登录,如果这个值不等于我们启动的线程个数,那显然说明这个程序是有问题的。整个程序代码如下:

  1. #include <stdio.h>
  2. #include <process.h>
  3. #include <windows.h>
  4. volatile long g_nLoginCount; //登录次数
  5. unsigned int __stdcall Fun(void *pPM); //线程函数
  6. const int THREAD_NUM = 10; //启动线程数
  7. unsigned int __stdcall ThreadFun(void *pPM)
  8. {
  9. Sleep(100); //some work should to do
  10. g_nLoginCount++;
  11. Sleep(50);
  12. return 0;
  13. }
  14. int main()
  15. {
  16. g_nLoginCount = 0;
  17. HANDLE  handle[THREAD_NUM];
  18. for (int i = 0; i < THREAD_NUM; i++)
  19. handle[i] = (HANDLE)_beginthreadex(NULL, 0, ThreadFun, NULL, 0, NULL);
  20. WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);
  21. printf("有%d个用户登录后记录结果是%d\n", THREAD_NUM, g_nLoginCount);
  22. return 0;
  23. }

程序中模拟的是10个用户登录,程序将输出结果:

原子操作 Interlocked系列函数

上一篇的线程报数程序一样,程序输出的结果好象并没什么问题。下面我们增加点用户来试试,现在模拟50个用户登录,为了便于观察结果,在程序中将50个用户登录过程重复20次,代码如下:

  1. #include <stdio.h>
  2. #include <windows.h>
  3. volatile long g_nLoginCount; //登录次数
  4. unsigned int __stdcall Fun(void *pPM); //线程函数
  5. const DWORD THREAD_NUM = 50;//启动线程数
  6. DWORD WINAPI ThreadFun(void *pPM)
  7. {
  8. Sleep(100); //some work should to do
  9. g_nLoginCount++;
  10. Sleep(50);
  11. return 0;
  12. }
  13. int main()
  14. {
  15. printf("     原子操作 Interlocked系列函数的使用\n");
  16. printf(" -- by MoreWindows( http://blog.csdn.net/MoreWindows ) --\n\n");
  17. //重复20次以便观察多线程访问同一资源时导致的冲突
  18. int num= 20;
  19. while (num--)
  20. {
  21. g_nLoginCount = 0;
  22. int i;
  23. HANDLE  handle[THREAD_NUM];
  24. for (i = 0; i < THREAD_NUM; i++)
  25. handle[i] = CreateThread(NULL, 0, ThreadFun, NULL, 0, NULL);
  26. WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);
  27. printf("有%d个用户登录后记录结果是%d\n", THREAD_NUM, g_nLoginCount);
  28. }
  29. return 0;
  30. }

运行结果如下图:

原子操作 Interlocked系列函数

现在结果水落石出,明明有50个线程执行了g_nLoginCount++;操作,但结果输出是不确定的,有可能为50,但也有可能小于50。

要解决这个问题,我们就分析下g_nLoginCount++;操作。在VC6.0编译器对g_nLoginCount++;这一语句打个断点,再按F5进入调试状态,然后按下Debug工具栏的Disassembly按钮,这样就出现了汇编代码窗口。可以发现在C/C++语言中一条简单的自增语句其实是由三条汇编代码组成的,如下图所示。

原子操作 Interlocked系列函数

讲解下这三条汇编意思:

第一条汇编将g_nLoginCount的值从内存中读取到寄存器eax中。

第二条汇编将寄存器eax中的值与1相加,计算结果仍存入寄存器eax中。

第三条汇编将寄存器eax中的值写回内存中。

这样由于线程执行的并发性,A执行到第二句,执行B,假设B执行结束后,继续执行A,其实寄存器eax是会恢复到A最后的值,这样导致的结果是线程B的执行结果被A覆盖,相当于B没有执行

很可能线程A执行到第二句时,线程B开始执行,线程B将原来的值又写入寄存器eax中,这样线程A所主要计算的值就被线程B修改了。这样执行下来,结果是不可预知的——可能会出现50,可能小于50。(这句话是错的)

因此在多线程环境中对一个变量进行读写时,我们需要有一种方法能够保证对一个值的递增操作是原子操作——即不可打断性,一个线程在执行原子操作时,其它线程必须等待它完成之后才能开始执行该原子操作。这种涉及到硬件的操作会不会很复杂了,幸运的是,Windows系统为我们提供了一些以Interlocked开头的函数来完成这一任务(下文将这些函数称为Interlocked系列函数)。

下面列出一些常用的Interlocked系列函数:

1.增减操作

LONG__cdeclInterlockedIncrement(LONG volatile* Addend);

LONG__cdeclInterlockedDecrement(LONG volatile* Addend);

返回变量执行增减操作之后的值。

LONG InterlockedExchangeAdd ( LPLONG volatile Addend, // addend
LONG Value // increment value);

返回运算后的值,注意!加个负数就是减。

2.赋值操作

LONG__cdeclInterlockedExchange(LONG volatile* Target, LONGValue);

Value就是新值,函数会返回原先的值。

在本例中只要使用InterlockedIncrement()函数就可以了。将线程函数代码改成:

  1. DWORD WINAPI ThreadFun(void *pPM)
  2. {
  3. Sleep(100);//some work should to do
  4. //g_nLoginCount++;
  5. InterlockedIncrement((LPLONG)&g_nLoginCount);
  6. Sleep(50);
  7. return 0;
  8. }

再次运行,可以发现结果会是唯一的。

原子操作 Interlocked系列函数

因此,在多线程环境下,我们对变量的自增自减这些简单的语句也要慎重思考,防止多个线程导致的数据访问出错。更多介绍,请访问MSDN上Synchronization Functions这一章节,地址为 http://msdn.microsoft.com/zh-cn/library/aa909196.aspx

看到这里,相信本系列首篇《秒杀多线程第一篇 多线程笔试面试题汇总》中选择题第一题(百度笔试题)应该可以秒杀掉了吧(知其然也知其所以然),正确答案是D。另外给个附加问题,程序中是用50个线程模拟用户登录,有兴趣的同学可以试下用100个线程来模拟一下(上机试试绝对会有意外发现^_^)。

对于线程数多于64个的情况,可以实现。
代码修改如下
// WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); 
//因而当线程数多于64时WaitForMultipleObjects应做如下更改: 
int tempNumThreads = THREAD_NUM; 
int tempMax = 0; 
while( tempNumThreads >= MAXIMUM_WAIT_OBJECTS ) 

tempNumThreads -= MAXIMUM_WAIT_OBJECTS; 
WaitForMultipleObjects( MAXIMUM_WAIT_OBJECTS, &handle[ tempMax], TRUE, INFINITE); 
tempMax += MAXIMUM_WAIT_OBJECTS; 

WaitForMultipleObjects( tempNumThreads, &handle[ tempMax ], TRUE, INFINITE);
//但这种方法对第三个参数为FALSE即只要有一个事件为有信号时不适用。

下一篇《秒杀多线程第四篇 一个经典多线程同步问题》将提出一个稍为复杂点但却非常经典的多线程同步互斥问题,这个问题会采用不同的方法来解答,从而让你充分熟练多线程同步互斥的“招式”。更多精彩,欢迎继续参阅。

上一篇:局域网内客户端无法使用机器名连接SQLServer服务器


下一篇:Leetcode4:Median of Two Sorted Arrays@Python