距离
import math def cal_dis(lat1, lon1,lat2, lon2): latitude1 = (math.pi/180)*lat1 latitude2 = (math.pi/180)*lat2 longitude1 = (math.pi/180)*lon1 longitude2= (math.pi/180)*lon2 #因此AB两点的球面距离为:{arccos[sinb*siny+cosb*cosy*cos(a-x)]}*R #地球半径 R = 6378.137 d = math.acos(math.sin(latitude1)*math.sin(latitude2)+ math.cos(latitude1)*math.cos(latitude2)*math.cos(longitude2-longitude1))*R return d if __name__ == '__main__': print cal_dis(23.0,101.1,23.06,113.34)
或者使用
from geopy.distance import geodesic geodesic((30.28708,120.12802999999997), (28.7427,115.86572000000001)).m
经纬度是角度,而三角函数的输入是弧度。
方位角
def calc_azimuth(lat1, lon1, lat2, lon2): lat1_rad = lat1 * math.pi / 180 lon1_rad = lon1 * math.pi / 180 lat2_rad = lat2 * math.pi / 180 lon2_rad = lon2 * math.pi / 180 y = math.sin(lon2_rad - lon1_rad) * math.cos(lat2_rad) x = math.cos(lat1_rad) * math.sin(lat2_rad) - \ math.sin(lat1_rad) * math.cos(lat2_rad) * math.cos(lon2_rad - lon1_rad) brng = math.atan2(y, x) * 180 / math.pi return float((brng + 360.0) % 360.0)