【心电信号】基于matlab心电信号ECG滤波处理【含Matlab源码 1067期】

一、简介

基于matlab心电信号ECG滤波处理

二、源代码

function varargout = ECG(varargin)
% ECG MATLAB code for ECG.fig
%      ECG, by itself, creates a new ECG or raises the existing
%      singleton*.
%
%      H = ECG returns the handle to a new ECG or the handle to
%      the existing singleton*.
%
%      ECG('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in ECG.M with the given input arguments.
%
%      ECG('Property','Value',...) creates a new ECG or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before ECG_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to ECG_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ECG

% Last Modified by GUIDE v2.5 22-May-2020 21:35:12

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @ECG_OpeningFcn, ...
                   'gui_OutputFcn',  @ECG_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before ECG is made visible.
function ECG_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to ECG (see VARARGIN)

% Choose default command line output for ECG
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes ECG wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = ECG_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;



function edit1_Callback(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
%        str2double(get(hObject,'String')) returns contents of edit1 as a double


% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
[FileName PathName]=uigetfile('*.mat','MAT-files(*.mat)','选择文件');
str=[PathName FileName];
set(handles.edit1,'string',str);
Fs=200;N=512;MEAN=0;MIN=0;MAX=0;VAR=0;STD=0;RR=0;
global im;global MEAN;global MIN;global MAX;global VAR;global STD;global RR;
if strcmp(str,'D:\心电数据\被试2  心电\chenwei1.mat')==1
    im=1;
else
    im=2;
end
qq=get(handles.popupmenu1,'value')
bb=get(handles.popupmenu2,'value')
switch(im)
    case 1
            load('chenwei1.mat');
            ECG=xin(qq,:);
    case 2
           load('fanglipeng1.mat');
            ECG=xin(qq,:);
end

% uu1=get(handles.radiobutton7,'value');
% uu2=get(handles.radiobutton8,'value');
% uu3=get(handles.radiobutton8,'value');
% if uu1==1
%     MAX=max(EGC);
%     set(handles.edit3,'string',MAX);
% end
% if uu1==2
%     MIN=min(EGC);
%     set(handles.edit4,'string',MIN);
% end
% if uu1==3
%     MEAN=mean(EGC); 
%     set(handles.edit5,'string',MEAN);
% end
if          bb==1
            disp([num2str(bb)]);
            t=1/50:1/50:length(ECG)/50;
            MEAN=mean(xin(qq,:));MAX=max(xin(qq,:)); MIN=min(xin(qq,:));
            VAR=var(xin(qq,:),0,2);STD=std(xin(qq,:),0,2);
            axes(handles.axes3);
            grid on;plot(t,ECG);
            xlabel('时间(s)');ylabel('幅值(V)');
            title('原始心电信号时域显示');
            N=512;
            y=fft(ECG,N);
            mag=abs(y);
            f=(0:length(y)-1)*Fs/length(y);
            axes(handles.axes5);
            plot(f,mag)
            xlim([0,100]);
            title('原始心电信号频谱图')
            xlabel('频率(Hz)');ylabel('幅值');
            axes(handles.axes8);
            histogram(ECG);xlabel('信号幅值');ylabel('个数');
            title('不同区间心电信号的分布');
elseif      bb==2
            disp([num2str(bb)]);
            %-----------------------------心电信号高通滤波器进行基线漂移纠正--------------------------------%
            %还可采用椭圆滤波器或中值法(myMedfilt)等进行基线漂移纠正。
            fp=1.4;fr=0.05;rp=1;rs=30;
            wp=fp/(Fs/2);wr=fr/(Fs/2);
            [n,wn]=buttord(wp,wr,rp,rs);
            [b,a]=butter(n,wn,'high');
            [hw,w]=freqz(b,a);
            y2=filter(b,a,ECG);
            axes(handles.axes1);
            grid on;
            t1=0:1/50:(length(y2)-1)/50;
            plot(t1,y2)
            title('基线漂移去除时域')
            xlabel('时间(s)');ylabel('幅值(V)');
            y2=fft(y2,N);
            mfb=abs(y2);
            f=(0:length(y2)-1)*Fs/length(y2);
            axes(handles.axes2);
            grid on;
            plot(f,mfb);
            xlim([0,100]);
            title('基线纠正后信号幅频')
            xlabel('频率(Hz)');ylabel('幅值');
elseif      bb==3
            disp([num2str(bb)]);
            fp=60;fs=100;                    %通带截止频率, 阻带截止频率  
            rp=1.4;rs=1.6;                   %通带、阻带衰减  
            wp=2*pi*fp;ws=2*pi*fs;     
            [n,wn]=buttord(wp,ws,rp,rs,'s'); %’s’是确定巴特沃斯模拟滤波器阶次和3dB  截止模拟频率  
            [z,P,k]=buttap(n);   %设计归一化巴特沃斯模拟低通滤波器,z为极点,p为零点和k为增益  
            [bp,ap]=zp2tf(z,P,k);  %转换为Ha(p),bp为分子系数,ap为分母系数  
            [bs,as]=lp2lp(bp,ap,wp); %Ha(p)转换为低通Ha(s)并去归一化,bs为分子系数,as为分母系数  
            [hs,ws]=freqs(bs,as);         %模拟滤波器的幅频响应  
            [bz,az]=bilinear(bs,as,Fs);     %对模拟滤波器双线性变换  
            [h1,w1]=freqz(bz,az);         %数字滤波器的幅频响应  
            m=filter(bz,az,ECG);
            t1=0:1/50:(length(m)-1)/50;
            axes(handles.axes1);
            grid on;axis tight;
            plot(t1,m)
            title('低通滤波心电信号时域图');
            xlabel('时间(s)');ylabel('幅值(V)');
            y1=fft(m,N);
            mfa=abs(y1);
            f=(0:length(y1)-1)*Fs/length(y1);
            axes(handles.axes2);
            grid on;axis tight;
            plot(f,mfa);
            xlim([0,100]);
            title('低通滤波心电信号频谱图');
            xlabel('频率(Hz)');ylabel('幅值');
elseif     bb==4 
           disp([num2str(bb)]);
           %50Hz陷波器:由一个低通滤波器加上一个高通滤波器组成  
            %而高通滤波器由一个全通滤波器减去一个低通滤波器构成  
            Me=100;               %滤波器阶数  
            L=100;                %窗口长度  
            beta=100;             %衰减系数  
            Fs=200;  
            wc1=49/Fs*pi;     %wc1为高通滤波器截止频率,对应51Hz  
            wc2=50/Fs*pi     ;%wc2为低通滤波器截止频率,对应49Hz  
            h=ideal_lp(0.132*pi,Me)-ideal_lp(wc1,Me)+ideal_lp(wc2,Me); %h为陷波器冲击响应  
            w=kaiser(L,beta);  
            y=h.*rot90(w);         %y为50Hz陷波器冲击响应序列  
            y3=filter(y,1,ECG); 
            t1=0:1/50:(length(y3)-1)/50;
            axes(handles.axes1);
            grid on;axis tight;
            plot(t1,y3)
            title('去除工频干扰时域时域')
            xlabel('时间(s)');ylabel('幅值(V)');
            y3=fft(y3,N);
            mfc=abs(y3);
            f=(0:length(y3)-1)*Fs/length(y3);
            axes(handles.axes2);
            grid on;axis tight;
            plot(f,mfc);
            xlim([0,100]);
            title('去除工频干扰时域频域');
            xlabel('频率(Hz)');ylabel('幅值');
end
%%
%心率计算
%低通滤波
fp=60;fs=100;                    %通带截止频率,阻带截止频率  
rp=1.4;rs=1.6;                   %通带、阻带衰减  
wp=2*pi*fp;ws=2*pi*fs;     
[n,wn]=buttord(wp,ws,rp,rs,'s'); %’s’是确定巴特沃斯模拟滤波器阶次和3dB  截止模拟频率  
[z,P,k]=buttap(n);   %设计归一化巴特沃斯模拟低通滤波器,z为极点,p为零点和k为增益  
[bp,ap]=zp2tf(z,P,k);  %转换为Ha(p),bp为分子系数,ap为分母系数  
[bs,as]=lp2lp(bp,ap,wp); %Ha(p)转换为低通Ha(s)并去归一化,bs为分子系数,as为分母系数  
[hs,ws]=freqs(bs,as);         %模拟滤波器的幅频响应  
[bz,az]=bilinear(bs,as,Fs);     %对模拟滤波器双线性变换 
[h1,w1]=freqz(bz,az);         %数字滤波器的幅频响应  
m=filter(bz,az,ECG);
fp=1.4;fr=0.05;rp=1;rs=30;
wp=fp/(fs/2);wr=fr/(fs/2);
[n,wn]=buttord(wp,wr,rp,rs);
[b,a]=butter(n,wn,'high');
[hw,w]=freqz(b,a);
y2=filter(b,a,m);
%高通滤波
fp=1.4;fr=0.05;rp=1;rs=30;
wp=fp/(Fs/2);wr=fr/(Fs/2);
[n,wn]=buttord(wp,wr,rp,rs);
[b,a]=butter(n,wn,'high');
[hw,w]=freqz(b,a);
y2=filter(b,a,m);
%带阻滤波
Me=100;               %滤波器阶数  
L=100;                %窗口长度  
beta=100;             %衰减系数  
wc1=49/Fs*pi;     %wc1为高通滤波器截止频率,对应51Hz  
wc2=50/Fs*pi     ;%wc2为低通滤波器截止频率,对应49Hz  
h=ideal_lp(0.132*pi,Me)-ideal_lp(wc1,Me)+ideal_lp(wc2,Me); %h为陷波器冲击响应  
w=kaiser(L,beta);  
y=h.*rot90(w);         %y为50Hz陷波器冲击响应序列  
y3=filter(y,1,y2); 
%------------------------R波检测及心率计算---------------------------------
a=1;b=[-0.000563925539225382,-0.000687497480673608,-0.000400105459896818,1.40107308696153e-18,0.000167430218323421,-4.18540736387490e-19,-0.000215512204999462,-2.31378858508372e-19,0.000825087119402599,0.00173867121147225,0.00170041274003132,-2.89185229056478e-18,-0.00281247259984511,-0.00484192899664537,-0.00404159503274541,6.02125250728051e-18,0.00516947529617596,0.00792307431385663,0.00588976752279114,-7.41129393462523e-18,-0.00583817525454588,-0.00764316928687033,-0.00463943332803296,-9.61260744539564e-19,0.00196521978920439,-2.40802770032636e-18,-0.00240551785915901,4.71696771800100e-18,0.00853358817557591,0.0172851206658474,0.0162833499451329,-1.24036605494920e-17,-0.0253107164699268,-0.0426277900469897,-0.0350794664744733,1.73330580157676e-17,0.0449057473944898,0.0701489638765231,0.0540262508439817,-3.98392673063995e-17,-0.0616816640708770,-0.0915638898806427,-0.0672043113722621,-2.75356818775531e-17,0.0700978687033445,0.0996538686301192,0.0700978687033445,-2.75356818775531e-17,-0.0672043113722621,-0.0915638898806427,-0.0616816640708770,-3.98392673063995e-17,0.0540262508439817,0.0701489638765231,0.0449057473944898,1.73330580157676e-17,-0.0350794664744733,-0.0426277900469897,-0.0253107164699268,-1.24036605494920e-17,0.0162833499451329,0.0172851206658474,0.00853358817557591,4.71696771800100e-18,-0.00240551785915901,-2.40802770032636e-18,0.00196521978920439,-9.61260744539564e-19,-0.00463943332803296,-0.00764316928687033,-0.00583817525454588,-7.41129393462523e-18,0.00588976752279114,0.00792307431385663,0.00516947529617596,6.02125250728051e-18,-0.00404159503274541,-0.00484192899664537,-0.00281247259984511,-2.89185229056478e-18,0.00170041274003132,0.00173867121147225,0.000825087119402599,-2.31378858508372e-19,-0.000215512204999462,-4.18540736387490e-19,0.000167430218323421,1.40107308696153e-18,-0.000400105459896818,-0.000687497480673608,-0.000563925539225382];
d=filter(b,a,y3);
t=(0:(length(d)-1))/Fs;
d1=sort(d,'descend');d2=0;
for i=201 :2200
    d2=d1(i)+d2;
end;
d3=d2/2000;
[R_V,R_L]=findpeaks(d(12001:24000),'minpeakdistance',1,'minpeakheight',d3);
d3=d2/2000;
[R_V,R_L]=findpeaks(d(12001:24000),'minpeakdistance',1,'minpeakheight',d3);
%根据位置和采样频率来计算采样区间内的平均心率
H_Rate = 60*(length(R_L)-1)/((R_L(length(R_L))-R_L(1))/200);
RR=num2str(H_Rate,3);
%算出采样的时间区间
%R_Time = R_L(length(R_L))/200; 


% --- Executes on button press in radiobutton7.

function radiobutton7_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton7 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global MAX;
 set(handles.edit3,'string',MAX);

% Hint: get(hObject,'Value') returns toggle state of radiobutton7


% --- Executes on button press in radiobutton8.
function radiobutton8_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton8 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global MIN;
set(handles.edit4,'string',MIN);
% Hint: get(hObject,'Value') returns toggle state of radiobutton8


% --- Executes on button press in radiobutton9.
function radiobutton9_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton9 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global MEAN;
 set(handles.edit5,'string',MEAN);
% Hint: get(hObject,'Value') returns toggle state of radiobutton9



function edit3_Callback(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
%        str2double(get(hObject,'String')) returns contents of edit3 as a double


% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end

三、运行结果

【心电信号】基于matlab心电信号ECG滤波处理【含Matlab源码 1067期】

四、备注

版本:2014a
完整代码或代写加1564658423

上一篇:1023:Hello,World的大小


下一篇:树(二叉树)的性质