@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府
今天小编就为大家分享一篇tensorflow实现训练变量checkpoint的保存与读取,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
1.保存变量
先创建(在tf.Session()之前)saver
saver = tf.train.Saver(tf.global_variables(),max_to_keep=1) #max_to_keep这个保证只保存最后一次training的训练数据
然后在训练的循环里面
checkpoint_path = os.path.join(Path, ‘model.ckpt’) saver.save(session, checkpoint_path, global_step=step) #这里的step是循环训练的次数,也就是第几次迭代
以下保存的变量文件
2.变量读取
1.若要直接恢复所有变量可以
saver = tf.train.Saver(tf.global_variables())
moudke_file=tf.train.latest_checkpoint('PATH')
saver.restore(sess,moudke_file)
PATH是存放保存变量的路径,会自动找到最近保存的变量文件
2 若想读取其中一部分变量值
def read_checkpoint():
w = []
checkpoint_path = '/home/ximao/models/resnet3/variable_logs/model.ckpt-17000'
reader = tf.train.NewCheckpointReader(checkpoint_path)
var = reader.get_variable_to_shape_map()
for key in var:
if 'weights' in key and 'conv' in key and 'Mo' not in key:
print('tensorname:', key)
# # print(reader.get_tensor(key))
- 若想恢复其中一部分变量值到新网络
(1)首先你要先获取你想要赋值新网络变量的变量名,这里变量名不是一个字符串,而是<name,shape,dtype>这样的一个结构,
然后把你要赋值的元素转为张量,最后把值赋给你得到变量名 如下:
var=[v for v in weight_pruned if v.op.name=='WRN/conv1/weights']
conv1_temp=tf.convert_to_tensor(conv1,dtype=tf.float32)
sess.run(tf.assign(var[0],conv1_temp))
weight_pruned 存放的是你新网络中所有的变量
非常感谢你的阅读
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深入的研习计算机基础知识,整理好了,我放在我们的微信公众号《程序员学府》,如果你也不甘平庸,那就与我一起在编码之外,不断成长吧!
其实这里不仅有技术,更有那些技术之外的东西,比如,如何做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?[点击加入]
想做你自己想成为高尚人,加油!