Largest Rectangle in Histogram
Given n non-negative integers representing the histogram‘s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
1、最初是用最大子矩阵求解,不过TLE
class Solution { public: int largestRectangleArea(vector<int> &height) { int len=height.size(); vector<int> L(len); vector<int> R(len,len); vector<int> sortH(height); sort(sortH.begin(),sortH.end()); int result=0; for(int i=0;i<sortH.size();i++){ int left=0,right=len; for(int j=0;j<len;j++){ if(height[j]>=sortH[i]){ L[j]=max(L[j],left); } else { left=j+1; L[j]=0;R[j]=len; } } for(int j=len-1;j>=0;j--){ if(height[j]>=sortH[i]){ R[j]=min(R[j],right); result=max(result,sortH[i]*(R[j]-L[j])); } else right=j; } } return result; } };
有个用栈实现的方法很好
struct node{ int height; int index; node(int h,int i):height(h),index(i){} }; class Solution { public: int largestRectangleArea(vector<int> &height) { if(height.empty())return 0; int len=height.size(); int result=0; stack<node> st; for(int i=0;i<len;i++){ if(st.empty()||height[i]>st.top().height){ st.push(node(height[i],i)); } else if(height[i]<st.top().height){ int lastIndex=0; while(!st.empty()&&height[i]<st.top().height){ lastIndex=st.top().index; result=max(result,st.top().height*(i-lastIndex)); st.pop(); } st.push(node(height[i],lastIndex)); } } while(!st.empty()){ result=max(result,st.top().height*(len-st.top().index)); st.pop(); } return result; } };