专项测试(数学1)

今天模拟赛考得没有感觉,感觉数学专题没用到数学......

T1 young

做这个题,本来以为摇摆兵可以早一点切掉,然后让他帮帮我来着

结果他就比我早了一分钟,并且我们两个同时写出了答案相同的错误代码呃呃

好难的亚子

专项测试(数学1)

该说的题解都说了,我这里给出p的求法

哎呀算了算了直接看代码吧

code
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fo(i,x,y) for(int i=(x);i<=(y);i++)
#define fu(i,x,y) for(int i=(x);i>=(y);i--)
int read(){
    int s=0,t=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')t=-1;ch=getchar();}
    while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
    return s*t;
}
const int mod=258280327;
const int N=51;
const int M=9;
int ksm(int x,int y){
    int ret=1;
    while(y){
        if(y&1)ret=ret*x%mod;
        x=x*x%mod;y>>=1;
    }return ret;
}
int n,m,ans;
int f[N][M],g[N][N][M],p[N][N][M][1<<M];
int jc[N],inv[N],pw2[(N+1)*M];
int C(int x,int y){return jc[x]*inv[y]%mod*inv[x-y]%mod;}
int P(int s,int t,int m,int k){
    if(!m)return 1;
    if(!s||!t)return pw2[(s+t)*m];
    if(!k)return pw2[(s+t)*m];
    if(p[s][t][m][k]!=-1)return p[s][t][m][k];
    if((k>>m-1)&1)return p[s][t][m][k]=P(s,t,m-1,k^(1<<(m-1)))*2%mod;
    int ret=0;
    fo(i,0,s)fo(j,0,t){
        int res=C(s,i)*C(t,j)%mod;
        res=res*P(i,j,m-1,k)%mod*P(s-i,t-j,m-1,k)%mod;
        if((i&&j)||(s-i&&t-j))ret=(ret+res)%mod;
    }
    ret=(ret+2*P(s,t,m-1,0))%mod;
    return p[s][t][m][k]=ret;
}
int G(int s,int t,int m){
    if(!s||!t||!m)return 0;
    if(g[s][t][m]!=-1)return g[s][t][m];
    int ret=0;
    fo(k,1,(1<<m)-1)ret=(ret+P(s,t,m,k))%mod;
    return g[s][t][m]=ret;
}
int F(int n,int m){
    if(!m||n<=1)return 0;
    if(f[n][m]!=-1)return f[n][m];
    int ret=0;//cout<<"SB"<<endl;
    fo(i,0,n){
        int res=0;
        if(i)res=(res+pw2[(n-i)*(m-1)]*F(i,m-1))%mod;
        if(n-i)res=(res+pw2[i*(m-1)]*F(n-i,m-1))%mod;
        if(i&&(n-i))res=(res+pw2[(n+1)*(m-1)]+G(i,n-i,m-1))%mod;
        ret=(ret+res*C(n,i))%mod;
    }
    return f[n][m]=ret;
}
signed main(){
    n=read();m=read();
    memset(f,-1,sizeof(f));
    memset(g,-1,sizeof(g));
    memset(p,-1,sizeof(p));
    pw2[0]=1;fo(i,1,(n+1)*m)pw2[i]=pw2[i-1]*2%mod;
    jc[0]=1;fo(i,1,n)jc[i]=jc[i-1]*i%mod;
    inv[0]=1;inv[n]=ksm(jc[n],mod-2);
    fu(i,n-1,1)inv[i]=inv[i+1]*(i+1)%mod;
    ans=F(n,m)*ksm(pw2[n*m],mod-2)%mod;
    // cout<<F(n,m)<<" "<<pw2[n*m]<<endl;
    // cout<<G(2,2,2)<<endl;
    // cout<<P(3,3,3,1)<<endl;
    //1 1 2 1 : 
    // ans=24ll*ksm(16,mod-2)%mod;
    printf("%lld",ans);
}

T2 Simple

设\(f(n)\)为\(n\)位钦定数的个数

答案为\(\sum\limits_{i=1}^{n}i^2f(i)\)

专项测试(数学1)

这个东西其实是个莫比乌斯反演

我们直接化简它,得到

\[\sum\limits_{d=1}^{n}d*\mu(d)\sum\limits_{i=1}^{\left\lfloor\frac{n}{d} \right\rfloor}i*10^i \]

我们发现后面这个咋也不能杜教筛,但是前面那个却可以,于是调换个顺序

\[\sum\limits_{i=1}^{n}i*10^i\sum\limits_{d=1}^{\left\lfloor\frac{n}{i} \right\rfloor}d*\mu(d) \]

后面这个直接卷上一个\(id\)就能杜教筛了

前面那个有通项公式,直接\(OEIS\)

其实乘一个\(10\)然后两个一消就完事了,被七百信一眼切了,我和摇摆兵玩了一个小时没玩明白

code
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fo(i,x,y) for(int i=(x);i<=(y);i++)
#define fu(i,x,y) for(int i=(x);i>=(y);i--)
int read(){
    int s=0,t=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')t=-1;ch=getchar();}
    while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
    return s*t;
}
const int mod=258280327;
const int N=1e7+5;
int ksm(int x,int y){
    int ret=1;
    while(y){
        if(y&1)ret=ret*x%mod;
        x=x*x%mod;y>>=1;
    }return ret;
}
int n,ans;
signed p[N],cnt,R=1e7;
bool vis[N];
int ss[N],iv,i2;
void init(){
    ss[1]=1;
    fo(i,2,R){
        if(!vis[i])p[++cnt]=i,ss[i]=-1;
        for(int j=1;j<=cnt&&i*p[j]<=R;j++){
            vis[i*p[j]]=true;
            if(i%p[j]==0){ss[i*p[j]]=0;break;}
            else ss[i*p[j]]=-ss[i];
        }
    }
    fo(i,1,R)ss[i]=(1ll*ss[i-1]+1ll*i*ss[i]%mod+mod)%mod;
}
int f(int x){return ((9*x-1)%mod*ksm(10,x)%mod+1+mod)%mod*10%mod*iv%mod;}
unordered_map<int,int> mp;
int t(int x){x%=mod;return x*(x+1)%mod*i2%mod;}
int S(int x){
    if(x<=R)return ss[x];
    if(mp.find(x)!=mp.end())return mp[x];
    int ret=1;
    for(int l=2,r;l<=x;l=r+1){
        r=x/(x/l);
        ret=(ret-(t(r)-t(l-1)+mod)*S(x/l)%mod+mod)%mod;
    }return mp[x]=ret;
}
signed main(){
    n=read();init();iv=ksm(81,mod-2);
    i2=ksm(2,mod-2);
    for(int l=1,r;l<=n;l=r+1){
        r=n/(n/l);
        ans=(ans+(f(r)-f(l-1)+mod)*S(n/l))%mod;
    }
    printf("%lld",ans);
    return 0;
}

T3 mate

组合数取模嘛

能直接做的直接做,能\(CRT\)的就\(CRT\),再不济就分解质因数,到点了就输出0

于是乎就切了

正解是线段树维护质因子,因为最后的式子只有一个会变化,所以我们直接用线段树单点修,全局查就行了

code
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define fo(i,x,y) for(int i=(x);i<=(y);i++)
#define fu(i,x,y) for(int i=(x);i>=(y);i--)
int read(){
    int s=0,t=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')t=-1;ch=getchar();}
    while(isdigit(ch)){s=s*10+ch-'0';ch=getchar();}
    return s*t;
}
const int N=1e6+5;
int n,mod,xpos,ypos;
int p[N],cnt,R=1e6,buc[N],bmo[N];
bool vis[N];
int mo[N],cmo,an[N],ans;
void init(){
    fo(i,2,R){
        if(!vis[i])p[++cnt]=i;
        for(int j=1;j<=cnt&&i*p[j]<=R;j++){
            vis[i*p[j]]=true;
            if(i%p[j]==0)continue;
        }
    }
}
int jc[15][N],inv[15][N];
int w(int x,int y,int i){return x>=y?jc[i][x]*inv[i][y]%mo[i]*inv[i][x-y]%mo[i]:0;}
int C(int x,int y,int i){if(y==0)return 1;return C(x/mo[i],y/mo[i],i)*w(x%mo[i],y%mo[i],i)%mo[i];}
int ksm(int x,int y,int mod){
    int ret=1;
    while(y){
        if(y&1)ret=ret*x%mod;
        x=x*x%mod;y>>=1;
    }return ret;
}
void spj_init(){
    fo(i,1,cmo){
        int mn=min(n,mo[i]-1);
        jc[i][0]=1;fo(j,1,mn)jc[i][j]=jc[i][j-1]*j%mo[i];
        inv[i][0]=1;inv[i][mn]=ksm(jc[i][mn],mo[i]-2,mo[i]);
        fu(j,mn-1,1)inv[i][j]=inv[i][j+1]*(j+1)%mo[i];
    }
}
void spj1(){
    spj_init();ans=0;
    fo(i,xpos,n-ypos){
        if((i+xpos)&1)continue;
        ans=(ans+C(n,i,1)*C(i,(xpos+i)>>1,1)%mo[1]*C(n-i,(n-i+ypos)>>1,1))%mo[1];
    }
    printf("%lld",ans);
}
int exgcd(int a,int b,int &x,int &y){
    if(!b)return x=1,y=0,a;
    int g=exgcd(b,a%b,x,y),t=x;
    x=y;y=t-a/b*y;return g;
}
void spj2(){
    spj_init();ans=0;
    int sum=1;
    fo(j,1,cmo){
        fo(i,xpos,n-ypos){
            if((i+xpos)&1)continue;
            an[j]=(an[j]+C(n,i,j)*C(i,(xpos+i)>>1,j)%mo[j]*C(n-i,(n-i+ypos)>>1,j))%mo[j];
        }sum*=mo[j];
    }
    fo(i,1,cmo){
        int m=sum/mo[i],x,y;
        exgcd(mo[i],m,x,y);
        ans=(ans+y%sum*m%sum*an[i])%sum;
    }
    ans=(ans+sum)%sum;
    printf("%lld",ans);
}
void CC(int x,int y){
    fo(i,1,cnt){
        if(p[i]>x)break;
        int now=x;
        while(now)buc[i]+=now/p[i],now/=p[i];
    }
    fo(i,1,cnt){
        if(p[i]>y)break;
        int now=y;
        while(now)buc[i]-=now/p[i],now/=p[i];
    }
    fo(i,1,cnt){
        if(p[i]>x-y)break;
        int now=x-y;
        while(now)buc[i]-=now/p[i],now/=p[i];
    }
}
signed main(){
    n=read();mod=read();init();
    xpos=abs(read());ypos=abs(read());
    if(n<xpos+ypos||((n+xpos+ypos)&1)||mod==1){printf("0");return 0;}
    int fl=0,tmp=mod;
    for(int i=1;p[i]*p[i]<=mod;i++){
        if(mod%p[i]==0)mod/=p[i],fl=max(fl,2ll),mo[++cmo]=p[i];
        while(mod%p[i]==0)mod/=p[i],fl=max(fl,3ll);
    }
    if(mod>1)fl=max(fl,1ll),mo[++cmo]=mod;
    if(fl!=1&&n>90000){printf("0");return 0;}
    if(fl==1){spj1();return 0;}
    if(fl==2){spj2();return 0;}
    mod=tmp;
    fo(i,xpos,n-ypos){
        if((xpos+i)&1)continue;
        int res=1;
        CC(n,i);CC(i,(xpos+i)>>1);CC(n-i,(n-i+ypos)>>1);
        fo(i,1,cnt)res=res*ksm(p[i],buc[i],mod)%mod,buc[i]=0;
        ans=(ans+res)%mod;
    }
    printf("%lld",ans);
    return 0;
}
上一篇:Miller–Rabin 素性检验算法


下一篇:UITableViewController 滚动引起的cocos2d动画暂停问题的解决