预分区
建表的时候默认只有一个region,会造成读写负载不均衡。每一个region维护着StartRow与EndRow,如果加入的数据符合某个Region维护的RowKey范围,则该数据交给这个Region维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高HBase性能。
1)手动设定预分区
hbase> create 'staff1','info',SPLITS => ['1000','2000','3000','4000']
2)生成16进制序列预分区
create 'staff2','info',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
3)按照文件中设置的规则预分区
创建splits.txt文件内容如下:
aaaa
bbbb
dddd
cccc
然后执行:
create 'staff3','info',SPLITS_FILE => 'splits.txt'
4)使用JavaAPI创建预分区
//自定义算法,产生一系列hash散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建HbaseAdmin实例
HBaseAdmin hAdmin = new HBaseAdmin(HbaseConfiguration.create());
//创建HTableDescriptor实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过HTableDescriptor实例和散列值二维数组创建带有预分区的Hbase表
hAdmin.createTable(tableDesc, splitKeys);
byte[][] splitKeys = ["10".getBytes(),"20".getBytes(),"30".getBytes()];
admin.createTable(tableDescriptor,splitKeys);
byte[] startKey = "10".getBytes();
byte[] stopKey = "40".getBytes();
admin.createTable(tableDescriptor,startKey,stopKey,5);
RowKey设计
Rowkey设计原则:
1、长度原则: rowkey的长度不能太长,一般保持在16字节以下(多长会占内存)
2、唯一性原则: 数据写入的时候两条数据的rowkey不能相同
3、Hash原则: 保证数据分散存储
热点问题解决方案:
一条数据的唯一标识就是RowKey,那么这条数据存储于哪个分区,取决于RowKey处于哪个一个预分区的区间内,设计RowKey的主要目的 ,就是让数据均匀的分布于所有的region中,在一定程度上防止数据倾斜。接下来我们就谈一谈RowKey常用的设计方案。
1)生成随机数、hash、散列值
比如:
原本rowKey为1001的,SHA1后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey为3001的,SHA1后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey为5001的,SHA1后变成:7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的rowKey来Hash后作为每个分区的临界值。
2)字符串反转
20170524000001转成10000042507102
20170524000002转成20000042507102
这样也可以在一定程度上散列逐步put进来的数据。
3)字符串拼接
20170524000001_a12e
20170524000001_93i7
内存优化
HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase的Java堆。但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。
基础优化
1)允许在HDFS的文件中追加内容
hdfs-site.xml、hbase-site.xml
属性:dfs.support.append
解释:开启HDFS追加同步,可以优秀的配合HBase的数据同步和持久化。默认值为true。
2)优化DataNode允许的最大文件打开数
hdfs-site.xml
属性:dfs.datanode.max.transfer.threads
解释:HBase一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:4096
3)优化延迟高的数据操作的等待时间
hdfs-site.xml
属性:dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。
4)优化数据的写入效率
mapred-site.xml
属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec或者其他压缩方式。
5)设置RPC监听数量
hbase-site.xml
属性:hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。
6)优化HStore文件大小
hbase-site.xml
属性:hbase.hregion.max.filesize
解释:默认值10737418240(10GB),如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。
7)优化HBase客户端缓存
hbase-site.xml
属性:hbase.client.write.buffer
解释:用于指定HBase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。
8)指定scan.next扫描HBase所获取的行数
hbase-site.xml
属性:hbase.client.scanner.caching
解释:用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。
9)flush、compact、split机制
当MemStore达到阈值,将Memstore中的数据Flush进Storefile;compact机制则是把flush出来的小文件合并成大的Storefile文件。split则是当Region达到阈值,会把过大的Region一分为二。涉及属性:
hbase.hregion.memstore.flush.size:134217728
hbase.regionserver.global.memstore.size.lower.limit 0.95
hbase.regionserver.global.memstore.size 0.4