log4j2+flume+hadoop

大数据数据采集架构

我们日常的应用会打印很多日志,很可能我们需要从这些日志中提取某些有用信息,要实现这个功能可以通过如下架构实现。我的选型是log4j2+flume+hadoop。整个架构如图所示:

log4j2+flume+hadoop

问题一:为什么是log4j2?
1.传统的log4j对性能的消耗很大。Apache宣称,对于并发发操作log4j2的性能是log4j的18倍
2.log4j2为flume专门提供了一个flume appender 利于flume做数据采集
3.log4j提供jsonLaout,可以生成json形式的日志,这种类型的数据对于第二阶段的数据解析提供了便利。
问题二:为什么是flume
1.flume是JAVA语言开发的,我个人是专门做JAVA,如果要做自定义会很方便,而flume提供了灵活的自定义功能。
2.flume在采集数据的时候便可做一些数据清洗的东西,将不想要的东西过滤掉。
3.flume本身比较轻巧,日数据在100W以内都能稳定使用。如果超过100W可以考虑跟kafka集成。
问题三:为什么是hadoop?
公司的要求是将用户的数据收集,存储,然后进行分析,根据分析结果改善用户体验,等等。hadoop的优势是对硬件的要求不高,并且有很强的容错性,能对数据进行离线分析。这些特点恰好满足公司需求。
IP分配
IP flume hadoop
m1 192.168.1.111 agent1 NameNode
s2 192.168.1.112 collector1 DataNode1
s3 192.168.1.113 collector2 DataNode2

一.log4j2

1. 新建一个marven项目,目录结构如图所示

log4j2+flume+hadoop

2. 配置pom文件
    <properties>
        <log4j.version>2.8.2</log4j.version>
        <slf4j.version>2.8.2</slf4j.version>
        <flume-ng.versiopn>2.8.2</flume-ng.versiopn>
        <log4j-flume-ng.version>1.7.0</log4j-flume-ng.version>
        <jackson.version>2.7.0</jackson.version>
    </properties>

    <dependencies>
        <!-- log4j -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
        </dependency>

        <!-- slf4j -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${slf4j.version}</version>
        </dependency>

        <!-- flume -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-flume-ng</artifactId>
            <version>${flume-ng.versiopn}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flume.flume-ng-clients</groupId>
            <artifactId>flume-ng-log4jappender</artifactId>
            <version>${log4j-flume-ng.version}</version>
        </dependency>

        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.7.0</version>
        </dependency>

        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>${jackson.version}</version>
        </dependency>
    </dependencies>
3.配置log4j2.xml
<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
    <!--自定义flume日志级别-->
    <CustomLevels>
        <CustomLevel name="FLUME" intLevel="88" />
    </CustomLevels>
    <!--定义输出日志的地方-->
    <Appenders>
        <!--控制台输出-->
        <Console name="Console" target="SYSTEM_OUT">
            <PatternLayout pattern="%d %-7level %logger{36} - %msg%n"/>
        </Console>
        <!--log文件输出-->
        <File name="MyFile" fileName="logs/app.log">
            <PatternLayout pattern="%d %-7level %logger{36} - %msg%n"/>
        </File>
        <!--输出到flume-->
        <Flume name="eventLogger" compress="false">
            <Agent host="192.168.1.111" port="41414"/>
            <!--输出方式为json-->
            <JSONLayout/>
        </Flume>
    </Appenders>
    <!--配置不同的日志级别输出到不同地点-->
    <Loggers>
        <!--root代表默认日志级别-->
        <Root level="error">
            <!--设定flume级别及以上的日志通过flume-appender输出-->
            <AppenderRef ref="eventLogger" level="FLUME" />
            <!--设定console级别及以上的日志通过控制台输出-->
            <AppenderRef ref="Console" level="info" />
            <!--设定error及以上的日志通过log文件输出-->
            <AppenderRef ref="MyFile" level="error" />
        </Root>
    </Loggers>
</Configuration>

3.LaoutTest.java

import org.apache.logging.log4j.Level;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;


import java.util.Date;

/**
 * Created by hadoop on 2017/7/28.
 */
public class LaoutTest {
    static Logger logger = LogManager.getLogger(LaoutTest.class);
    public static void main(String[] args) throws InterruptedException {
        while (true) {
            // 每隔两秒log输出一下当前系统时间戳
            Thread.sleep(100);
            logger.info(String.valueOf(new Date().getTime()));
            logger.log(Level.getLevel("FLUME"), "another diagnostic message");
            try {
                throw new Exception("exception msg");
            }
            catch (Exception e) {
                logger.error("error:" + e.getMessage());
            }
        }
    }
}

二.flume

flume我使用的是1.7版本,下载地址https://flume.apache.org/download.html
安装在/usr下 文件名更名为flume。三台机器都这样操作。如下配置文件都是在/user/flume/conf下创建生成
1. agent1: 配置文件名avro-mem-hdfs-collector.properties
#nents on this agent
agent1.sources = r1
agent1.sinks = k1 k2 k3
agent1.channels = c1 c2 c3

#设定来源 通道 存储之间的关系
agent1.sources.r1.channels = c1 c2 c3
agent1.sinks.k1.channel = c1
agent1.sinks.k2.channel = c2
agent1.sinks.k3.channel = c3
agent1.sources.r1.selector = replicating

#source
agent1.sources.r1.type = avro
agent1.sources.r1.bind = 0.0.0.0
agent1.sources.r1.port = 41414
agent1.sources.r1.fileHeader = false
agent1.sources.r1.interceptors =i1
agent1.sources.r1.interceptors.i1.type = timestamp

#channel c1
agent1.channels.c1.type = memory
agent1.channels.c1.keep-alive = 30 
agent1.channels.c1.capacity = 10000
agent1.channels.c1.transactionCapacity = 1000

#sink k1
agent1.sinks.k1.type = hdfs
agent1.sinks.k1.channel = c1
agent1.sinks.k1.hdfs.path = hdfs://192.168.1.111:9000/all/%Y-%m-%d/%H
agent1.sinks.k1.hdfs.filePrefix = logs
agent1.sinks.k1.hdfs.inUsePrefix = .
agent1.sinks.k1.hdfs.fileType = DataStream
agent1.sinks.k1.hdfs.rollInterval = 0
agent1.sinks.k1.hdfs.rollSize = 16777216
agent1.sinks.k1.hdfs.rollCount = 0
agent1.sinks.k1.hdfs.batchSize = 1000
agent1.sinks.k1.hdfs.writeFormat = text
agent1.sinks.k1.hdfs.fileType = DataStream
agent1.sinks.k1.callTimeout =10000

#channel c2
agent1.channels.c2.type=memory
agent1.channels.c2.keep-alive = 30
agent1.channels.c2.capacity = 10000
agent1.channels.c2.transactionCapacity = 1000

#sink for k2
agent1.sinks.k2.type = avro
agent1.sinks.k2.channel = c2
agent1.sinks.k2.hostname = 192.168.1.112
agent1.sinks.k2.port = 41414

#channel c3
agent1.channels.c3.type=memory
agent1.channels.c3.keep-alive = 30
agent1.channels.c3.capacity = 10000
agent1.channels.c3.transactionCapacity = 1000

#sink for k3
agent1.sinks.k3.type = avro
agent1.sinks.k3.channel = c2
agent1.sinks.k3.hostname = 192.168.1.113
agent1.sinks.k3.port = 41414
2. collector2 配置文件名avro-mem-hdfs.properties
#nents on this agent
collector2.sources = r1
collector2.sinks = k1
collector2.channels = c1

#source
collector2.sources.r1.channels = c1
collector2.sources.r1.type = avro
collector2.sources.r1.bind = 0.0.0.0
collector2.sources.r1.port = 41414
collector2.sources.r1.fileHeader = false
collector2.sources.r1.interceptors =i1
collector2.sources.r1.interceptors.i1.type = timestamp

# channel 
collector2.channels.c1.type = memory
collector2.channels.c1.keep-alive = 30 
collector2.channels.c1.capacity = 30000
collector2.channels.c1.transactionCapacity = 3000

# sink
collector2.sinks.k1.channel = c1
collector2.sinks.k1.type = hdfs
collector2.sinks.k1.hdfs.path = hdfs://192.168.1.111:9000/business1/%Y-%m-%d/%H
collector2.sinks.k1.hdfs.filePrefix = logs
collector2.sinks.k1.hdfs.inUsePrefix = .
collector2.sinks.k1.hdfs.fileType = DataStream
collector2.sinks.k1.hdfs.rollInterval = 0
collector2.sinks.k1.hdfs.rollSize = 16777216
collector2.sinks.k1.hdfs.rollCount = 0
collector2.sinks.k1.hdfs.batchSize = 1000
collector2.sinks.k1.hdfs.writeFormat = text
collector2.sinks.k1.hdfs.fileType = DataStream
collector2.sinks.k1.callTimeout =10000
3. collector3 配置文件avro-mem-hdfs.properties
#nents on this agent
#nents on this agent
collector3.sources = r1
collector3.sinks = k1
collector3.channels = c1

#source
collector3.sources.r1.channels = c1
collector3.sources.r1.type = avro
collector3.sources.r1.bind = 0.0.0.0
collector3.sources.r1.port = 41414
collector3.sources.r1.fileHeader = false
collector3.sources.r1.interceptors =i1
collector3.sources.r1.interceptors.i1.type = timestamp

# channel 
collector3.channels.c1.type = memory
collector3.channels.c1.keep-alive = 30 
collector3.channels.c1.capacity = 30000
collector3.channels.c1.transactionCapacity = 3000

# sink
collector3.sinks.k1.channel = c1
collector3.sinks.k1.type = hdfs
collector3.sinks.k1.hdfs.path = hdfs://192.168.1.111:9000/business2/%Y-%m-%d/%H
collector3.sinks.k1.hdfs.filePrefix = logs
collector3.sinks.k1.hdfs.inUsePrefix = .
collector3.sinks.k1.hdfs.fileType = DataStream
collector3.sinks.k1.hdfs.rollInterval = 0
collector3.sinks.k1.hdfs.rollSize = 16777216
collector3.sinks.k1.hdfs.rollCount = 0
collector3.sinks.k1.hdfs.batchSize = 1000
collector3.sinks.k1.hdfs.writeFormat = text
collector3.sinks.k1.hdfs.fileType = DataStream
collector3.sinks.k1.callTimeout =10000

4. 进入/user/flume目录启动agent与collectoer
1.启动agent1: 
bin/flume-ng agent -c ./conf/ -f conf/avro-mem-hdfs-collector.properties -Dflume.root.logger=INFO,console -n agent1
2.启动collector1: 
bin/flume-ng agent -c ./conf/ -f conf/avro-mem-hdfs.properties -Dflume.root.logger=INFO,console -n collector1
3.启动collector2:
bin/flume-ng agent -c ./conf/ -f conf/avro-mem-hdfs.properties -Dflume.root.logger=INFO,console -n collector3
上一篇:使用Photoshop鼠绘功能制作超逼真的人像眼睛效果教程


下一篇:shiro