深度学习菜鸟的信仰地︱Supervessel超能云服务器、深度学习环境全配置

并非广告~实在是太良心了,所以费时间给他们点赞一下~

SuperVessel云平台是IBM中国研究院和中国系统与技术中心基于POWER架构和OpenStack技术共同构建的,

支持开发者远程开发的免费科研云平台。除支持虚拟机和容器服务外还提供:大数据Hadoop,Spark开发环境、Python科学计算开发环境(可替代Matlab)、Java

Eclipse/Bluefish运行环境、C/C++运行环境

只需任意一个邮箱,1分钟就可以申请到服务器,没见过更快的了…使用之后觉得不足之处:

  • 1、由于公益项目,社区也不够壮大,服务器不是那么稳定,会出现登录不上等问题(QQ讨论群344373069)
  • 2、一些功能需要设置VPN才能实现,当然啦,这点代价也还好,就是笔者在测试的时候发现连接了VPN有些功能还实现不了
  • 3、开发文档较少,出现问题很难得到解答;

相关博文内容:

- 1、学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

- 2、supervessel-免费云镜像︱GPU加速的Caffe深度学习开发环境


一、GPU配置

SuperVessel的云端GPU共享技术为全球首发,**它基于POWER 8处理器和NVIDIA® Tesla® K40 GPU加速器的异构计算系统。**Tesla K40是Tesla加速计算平台的高端加速器,可以向用户提供超级计算级的性能,满足各种严苛的HPC应用需求。

NVIDIA所推出的cuDNN(CUDA深度神经网络库)可以被集成到各个主流深度学习框架中以提供GPU加速支持,其中就包括此次SuperVessel超能云GPU加速服务提供的Caffe、Torch、Theano框架,助研究人员实现更加高效的深度学习模型训练。


二、已有的深度学习框架

Supervessel超能云服务器,已经配置好了框架,可以直接上手试用。而且现在有了DIGITS,现在有以下五款带GPU深度学习配置:

  • 1、GPU加速的TensorFlow 深度学习环境
  • 2、GPU加速的Caffe深度学习开发环境
  • 3、GPU Accelerated Caffe+DIGITS Deep Learning Development Environment
  • 4、GPU Accelerated Theano Machine Learning Development Environment
  • 5、GPU Accelerated Torch7 Machine Learning Development Environment

三、关于蓝点

公益归公益,也不能一味的全免费。这个云服务器也有消耗积分一类的,就是蓝点啦。

蓝点最开始有500点,建立镜像要消耗,每天开着也是要消耗的,所以没事就把服务器关一下。

为了更加有效地利用SuperVessel超能云的资源,我们采取了蓝点系统来调节用户的使用行为。每一项服务都将消耗用户的蓝点,当蓝点耗尽后,用户将无法再使用超能云的服务。

但用户可通过以下方法获得蓝点补充:

• * * 可将您在SuperVessel上的注册账号发给help@ptopenlab.com,说明申请蓝点,即可获得。

• * * 如果您加入了超能云技术支持QQ群(344373069),可联系管理员获得蓝点。


四、官方案例资料

1、CIFAR10分类,CIFAR10相对比较简单,是由60000张32X32像素的彩色图片组成,分为10类,每类含6000张图片。这10类图片分别是飞机、车、鸟、猫、鹿、狗、青蛙、马、船和卡车。

链接:跟我上手深度学习: 五分钟尝试第一个深度学习(Caffe)训练和图像分类(详细图文步骤)

https://my.oschina.net/u/1431433/blog/687393

2、GPU加速的Caffe+DIGITS可视化深度学习开发环境

https://services.ptopenlab.com/mediawiki/index.php/GPU%E5%8A%A0%E9%80%9F%E7%9A%84Caffe%2BDIGITS%E5%8F%AF%E8%A7%86%E5%8C%96%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83

3、入门配置篇:超能云 (SuperVessel Cloud) – 使用入门篇 (专供开发者的免费虚拟机资源)

https://my.oschina.net/u/1431433/blog/380643

4、GPU加速的Torch深度学习开发环境

https://services.ptopenlab.com/mediawiki/index.php/GPU%E5%8A%A0%E9%80%9F%E7%9A%84Torch%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83

5、GPU加速的Theano深度学习开发环境

https://services.ptopenlab.com/mediawiki/index.php/GPU%E5%8A%A0%E9%80%9F%E7%9A%84Theano%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83

6、GPU加速的TensorFlow深度学习开发环境

https://services.ptopenlab.com/mediawiki/index.php/GPU%E5%8A%A0%E9%80%9F%E7%9A%84TensorFlow%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83

用户手册界面:https://services.ptopenlab.com/mediawiki/index.php/Main_Page


参考资料:

上一篇:malloc,free简单的实现


下一篇:细说CryptoJs使用(微信小程序加密解密)