编程语言python-jieba分词库

编程语言python-jieba分词库

jieba 库是优秀的中文分词第三方库,中文文本需要通过分词获得单个的词语

jieba库安装

管理员身份运行cmd窗口输入命令:pip install jieba

jieba库功能介绍

特征

  • 支持三种分词模式
    • 精确模式:试图将句子最精确地切开,适合文本分析
    • 全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义
    • 搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词
  • 支持繁体分词
  • 支持自定义词典

分词功能

  • jieba.cut 和 jieba.lcut 方法接受两个传入参数
    • 第一个参数为需要分词的字符串
    • cut_all参数用来控制是否采用全模式

lcut 将返回的对象转化为 list 对象返回

  • jieba.cut_for_search 和 jieba.lcut_for_search 方法接受一个参数
    • 需要分词的字符串

该方法适合用于搜索引擎构建倒排索引的分词,颗粒度较细
jieba.lcut_for_search 方法返回列表类型

添加自定义词典

开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率

用法

  1. 使用自定义词典文件
    • jieba.load_userdict(file_name) # file_name 是自定义词典的路径
  2. 使用jieba在程序中动态修改词典
    • jieba.add_word(new_words) # new_words 是想要添加的新词
    • jieba.del_word(words) # 删除words

关键词提取

  • jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

sentence 为待提取的文本
topK 为返回几个TF/IDF权重最大的关键词,默认是20

词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer参数可指定内部使用的jieba.Tokenizer 分词

jieba.posseg.dt 为默认词性标注分词器
标注句子分词后每个词的词性,采用和ictclas兼容的标记法

案例

一、精确模式

import jieba
list1 = jieba.lcut("*是一个伟大的国家")
print(list1)
print("精确模式:"+"/".join(list1))

二、全模式

list2 = jieba.lcut("*是一个伟大的国家",cut_all = True)
print(list2,end=",")
print("全模式:"+"/".join(list2))

三、搜索引擎模式

list3 = jieba.lcut_for_search("*是一个伟大的国家")
print(list3)
print("搜索引擎模式:"+"  ".join(list3))

四、修改词典

import jieba
text = "中信建投投资公司了一款游戏,中信也投资了一个游戏公司"
word = jieba.lcut(text)
print(word)

# 添加词
jieba.add_word("中信建投")
jieba.add_word("投资公司")
word1 = jieba.lcut(text)
print(word1)

# 删除词
jieba.del_word("中信建投")
word2 = jieba.lcut(text)
print(word2)

五、词性标注

import jieba.posseg as pseg

words = pseg.cut("我爱北京*")
for i in words:
    print(i.word,i.flag)

六、统计三国演义中人物出场的次数

三国演义文本下载

import  jieba

txt = open("文件路径", "r", encoding='utf-8').read()    # 打开并读取文件
words = jieba.lcut(txt)     # 使用精确模式对文本进行分词
counts = {}     # 通过键值对的形式存储词语及其出现的次数

for word in words:
    if  len(word) == 1:    # 单个词语不计算在内
        continue
    else:
        counts[word] = counts.get(word, 0) + 1    # 遍历所有词语,每出现一次其对应的值加 1
        
items = list(counts.items())     #将键值对转换成列表
items.sort(key=lambda x: x[1], reverse=True)    # 根据词语出现的次数进行从大到小排序 

for i in range(15):
    word, count = items[i]
    print("{0:<10}{1:>5}".format(word, count))
import jieba

excludes = {"将军","却说","荆州","二人","不可","不能","如此","如何"}
txt = open("三国演义.txt", "r", encoding='utf-8').read()
words  = jieba.lcut(txt)
counts = {}

for word in words:
    if len(word) == 1:
        continue
    elif word == "诸葛亮" or word == "孔明曰":
        rword = "孔明"
    elif word == "关公" or word == "云长":
        rword = "关羽"
    elif word == "玄德" or word == "玄德曰":
        rword = "刘备"
    elif word == "孟德" or word == "丞相":
        rword = "曹操"
    else:
        rword = word
        counts[rword] = counts.get(rword,0) + 1
    
for i in excludes:
    del counts[i]
    
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True) 

for i in range(10):
    word, count = items[i]
    print ("{0:<10}{1:>5}".format(word, count))

文章来源:https://www.cnblogs.com/L-hua/p/15584823.html

上一篇:Python小题目5:jieba库的初步使用


下一篇:python-jieba分词库