范数理解(0范数,1范数,2范数)——非常经典

我们都知道,函数与几何图形往往是有对应关系的,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。


但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某种关系转为另外一个集合。通常数学书是先说映射,然后再讨论函数,这是因为函数是映射的一个特例。


为了更好的在数学上表达这种映射关系,(这里特指线性关系)于是就引进了矩阵。这里的矩阵就是表征上述空间映射的线性关系。而通过向量来表示上述映射中所说的这个集合,而我们通常所说的基,就是这个集合的最一般关系。于是,我们可以这样理解,一个集合(向量),通过一种映射关系(矩阵),得到另外一个集合(另外一个向量)。

那么向量的范数表示这个原有集合的大小。


矩阵的范数表示这个变化过程的大小的一个度量。


简单说:0范数表示向量中非零元素的个数(即为其稀疏度)。1范数表示为,绝对值之和。而2范数则指模。


范数理解(0范数,1范数,2范数)——非常经典


范数理解(0范数,1范数,2范数)——非常经典


Lp范数是常用的正则化项,其中L2范数|w|2倾向于w的分量取值尽量均衡,即非零分量个数尽量稠密,而L0范数与L1范数则是倾向于w的分量尽量稀疏,即非零分量个数尽量少。

上一篇:C# Serializable对象序列化的作用


下一篇:Freemarker(下)