- 作者: 负雪明烛
- id: fuxuemingzhu
- 个人博客:http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/queens-that-can-attack-the-king/
题目描述
On an 8x8 chessboard, there can be multiple Black Queens and one White King.
Given an array of integer coordinates queens that represents the positions of the Black Queens, and a pair of coordinates king that represent the position of the White King, return the coordinates of all the queens (in any order) that can attack the King.
Example 1:
Input: queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0]
Output: [[0,1],[1,0],[3,3]]
Explanation:
The queen at [0,1] can attack the king cause they're in the same row.
The queen at [1,0] can attack the king cause they're in the same column.
The queen at [3,3] can attack the king cause they're in the same diagnal.
The queen at [0,4] can't attack the king cause it's blocked by the queen at [0,1].
The queen at [4,0] can't attack the king cause it's blocked by the queen at [1,0].
The queen at [2,4] can't attack the king cause it's not in the same row/column/diagnal as the king.
Example 2:
Input: queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3]
Output: [[2,2],[3,4],[4,4]]
Example 3:
Input: queens = [[5,6],[7,7],[2,1],[0,7],[1,6],[5,1],[3,7],[0,3],[4,0],[1,2],[6,3],[5,0],[0,4],[2,2],[1,1],[6,4],[5,4],[0,0],[2,6],[4,5],[5,2],[1,4],[7,5],[2,3],[0,5],[4,2],[1,0],[2,7],[0,1],[4,6],[6,1],[0,6],[4,3],[1,7]], king = [3,4]
Output: [[2,3],[1,4],[1,6],[3,7],[4,3],[5,4],[4,5]]
Constraints:
1 <= queens.length <= 63
queens[0].length == 2
0 <= queens[i][j] < 8
king.length == 2
0 <= king[0], king[1] < 8
- At most one piece is allowed in a cell.
题目大意
棋盘上有一个国王K,和若干个皇后Q,求哪些皇后能威胁到国王。
解题方法
遍历
注意皇后会挡住其他的皇后,所以只有和国王处在同一条线上的第一个皇后才是威胁。因此我们从国王位置开始向8个方向辐射状遍历,找到在8个方向上能遇到的第一个皇后即可。
使用了set判断当前遍历到的位置上是否有皇后,如果找到皇后,则放入结果中,并且不再遍历。
C++代码如下:
class Solution {
public:
vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
set<vector<int>> s(queens.begin(), queens.end());
vector<vector<int>> res;
for (auto& dir : dirs) {
vector<int> pos = king;
while (true) {
pos[0] += dir[0];
pos[1] += dir[1];
if (pos[0] < 0 || pos[0] >= 8 || pos[1] < 0 || pos[1] >= 8)
break;
if (s.count(pos)) {
res.push_back(pos);
break;
}
}
}
return res;
}
private:
vector<vector<int>> dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
};
日期
2019 年 10 月 13 日 —— 国庆调休,这周末只有这一天假