畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 27097 Accepted Submission(s): 11840
Problem Description
省*“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
Sample Output
3
?
Source
浙大计算机研究生复试上机考试-2007年
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
using namespace std;
class Union_Find_Set {
#define MAX_UNION_FIND_SET_SIZE 105
public:
int setSize;
int father[MAX_UNION_FIND_SET_SIZE];
Union_Find_Set() {
setSize = ;
}
Union_Find_Set(int x) {
setSize = x;
clear(x);
}
void clear(int x) {
for (int i = ; i < x; i++) {
father[i] = i;
}
}
int getFather(int x) {
if (x != father[x]) {
father[x] = getFather(father[x]);
}
return father[x];
}
bool merge(int a, int b) {
a = getFather(a);
b = getFather(b);
if (a != b) {
father[a] = b;
return true;
} else {
return false;
}
}
int countRoot() {
int ret = ;
for (int i = ; i < setSize; i++) {
if (father[i] = i) {
ret++;
}
}
return ret;
}
};
class Kruskal {
#define Kruskal_MAXN 100
#define Kruskal_MAXM 10005
public:
Union_Find_Set ufs;
int x[Kruskal_MAXM], y[Kruskal_MAXM], w[Kruskal_MAXM], N, M;
Kruskal() {
N = ;
M = ;
}
void clear() {
N = ;
M = ;
}
void addEdge(int a, int b, int c) {
x[M] = a;
y[M] = b;
w[M] = c;
M++;
x[M] = b;
y[M] = a;
w[M] = c;
M++;
}
void sort(int l, int r) {
int i = l, j = r, m = w[(l + r) >> ], t;
do {
while (w[i] < m) {
i++;
}
while (m < w[j]) {
j--;
}
if (i <= j) {
t = x[i];
x[i] = x[j];
x[j] = t;
t = y[i];
y[i] = y[j];
y[j] = t;
t = w[i];
w[i] = w[j];
w[j] = t;
i++;
j--;
}
} while (i <= j);
if (l < j) {
sort(l, j);
}
if (i < r) {
sort(i, r);
}
}
int MST() {
sort(, M - );
ufs.clear(N + );
int cnt = , ret = ;
for (int i = ; i < M; i++) {
if (cnt == N - ) {
return ret;
}
if (ufs.getFather(x[i]) != ufs.getFather(y[i])) {
ufs.merge(x[i], y[i]);
ret += w[i];
cnt++;
}
}
if (cnt == N - ) {
return ret;
} else {
return -;
}
}
};
Kruskal Kr;
int main() {
int n, m;
while (scanf("%d%d", &m, &n) != EOF) {
if (m == ) {
break;
}
Kr.clear();
Kr.N = n;
for (int i = ; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
Kr.addEdge(a, b, c);
}
int ans = Kr.MST();
if (ans == -) {
printf("?\n");
} else {
printf("%d\n", ans);
}
}
return ;
}