python-Levenshtein几个计算字串相似度的函数解析

linux环境下,没有首先安装python_Levenshtein,用法如下:

python-Levenshtein几个计算字串相似度的函数解析

重点介绍几个该包中的几个计算字串相似度的几个函数实现。

1. Levenshtein.hamming(str1, str2)

计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。如

python-Levenshtein几个计算字串相似度的函数解析

2. Levenshtein.distance(str1, str2)

计算编辑距离(也成Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入删除替换。如

python-Levenshtein几个计算字串相似度的函数解析

算法实现 参考动态规划整理:http://www.cnblogs.com/kaituorensheng/archive/2013/05/15/3080990.html

3. Levenshtein.ratio(str1, str2)

计算莱文斯坦比。计算公式  r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是类编辑距离

注意:这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2

这样设计的目的:ratio('a', 'c'),sum=2,按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。

python-Levenshtein几个计算字串相似度的函数解析

4. Levenshtein.jaro(s1, s2)

计算jaro距离,

python-Levenshtein几个计算字串相似度的函数解析

其中的m为s1, s2的匹配长度,当某位置的认为匹配 当该位置字符相同,或者在不超过python-Levenshtein几个计算字串相似度的函数解析

         t是调换次数的一半

5. Levenshtein.jaro_winkler(s1, s2)

计算Jaro–Winkler距离python-Levenshtein几个计算字串相似度的函数解析

Levenshtein全部函数链接

Jaro–Winkler distance链接






本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/archive/2013/05/18/3085653.html,如需转载请自行联系原作者

上一篇:Java 设计模式实现 不错的引用


下一篇:python单线程爬虫(一)