将已有的新浪网分类资讯Scrapy爬虫项目,修改为基于RedisSpider类的scrapy-redis分布式爬虫项目。
注:items数据直接存储在Redis数据库中,这个功能已经由scrapy-redis自行实现。除非单独做额外处理(比如直接存入本地数据库等),否则不用编写pipelines.py代码。
items.py文件
# items.py # -*- coding: utf-8 -*- import scrapy import sys reload(sys) sys.setdefaultencoding("utf-8") class SinaItem(scrapy.Item): # 大类的标题 和 url parentTitle = scrapy.Field() parentUrls = scrapy.Field() # 小类的标题 和 子url subTitle = scrapy.Field() subUrls = scrapy.Field() # 小类目录存储路径 # subFilename = scrapy.Field() # 小类下的子链接 sonUrls = scrapy.Field() # 文章标题和内容 head = scrapy.Field() content = scrapy.Field()
settings.py文件
# settings.py SPIDER_MODULES = ['Sina.spiders'] NEWSPIDER_MODULE = 'Sina.spiders' USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)' DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" SCHEDULER = "scrapy_redis.scheduler.Scheduler" SCHEDULER_PERSIST = True SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue" #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack" ITEM_PIPELINES = { # 'Sina.pipelines.SinaPipeline': 300, 'scrapy_redis.pipelines.RedisPipeline': 400, } LOG_LEVEL = 'DEBUG' # Introduce an artifical delay to make use of parallelism. to speed up the # crawl. DOWNLOAD_DELAY = 1 REDIS_HOST = "192.168.13.26" REDIS_PORT = 6379
spiders/sina.py
# sina.py # -*- coding: utf-8 -*- from Sina.items import SinaItem from scrapy_redis.spiders import RedisSpider #from scrapy.spiders import Spider import scrapy import sys reload(sys) sys.setdefaultencoding("utf-8") #class SinaSpider(Spider): class SinaSpider(RedisSpider): name= "sina" redis_key = "sinaspider:start_urls" #allowed_domains= ["sina.com.cn"] #start_urls= [ # "http://news.sina.com.cn/guide/" #]#起始urls列表 def __init__(self, *args, **kwargs): domain = kwargs.pop('domain', '') self.allowed_domains = filter(None, domain.split(',')) super(SinaSpider, self).__init__(*args, **kwargs) def parse(self, response): items= [] # 所有大类的url 和 标题 parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract() parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract() # 所有小类的ur 和 标题 subUrls = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract() subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract() #爬取所有大类 for i in range(0, len(parentTitle)): # 指定大类的路径和目录名 #parentFilename = "./Data/" + parentTitle[i] #如果目录不存在,则创建目录 #if(not os.path.exists(parentFilename)): # os.makedirs(parentFilename) # 爬取所有小类 for j in range(0, len(subUrls)): item = SinaItem() # 保存大类的title和urls item['parentTitle'] = parentTitle[i] item['parentUrls'] = parentUrls[i] # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba) if_belong = subUrls[j].startswith(item['parentUrls']) # 如果属于本大类,将存储目录放在本大类目录下 if(if_belong): #subFilename =parentFilename + '/'+ subTitle[j] # 如果目录不存在,则创建目录 #if(not os.path.exists(subFilename)): # os.makedirs(subFilename) # 存储 小类url、title和filename字段数据 item['subUrls'] = subUrls[j] item['subTitle'] =subTitle[j] #item['subFilename'] = subFilename items.append(item) #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理 for item in items: yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse) #对于返回的小类的url,再进行递归请求 def second_parse(self, response): # 提取每次Response的meta数据 meta_1= response.meta['meta_1'] # 取出小类里所有子链接 sonUrls = response.xpath('//a/@href').extract() items= [] for i in range(0, len(sonUrls)): # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls']) # 如果属于本大类,获取字段值放在同一个item下便于传输 if(if_belong): item = SinaItem() item['parentTitle'] =meta_1['parentTitle'] item['parentUrls'] =meta_1['parentUrls'] item['subUrls'] =meta_1['subUrls'] item['subTitle'] =meta_1['subTitle'] #item['subFilename'] = meta_1['subFilename'] item['sonUrls'] = sonUrls[i] items.append(item) #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理 for item in items: yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse) # 数据解析方法,获取文章标题和内容 def detail_parse(self, response): item = response.meta['meta_2'] content = "" head = response.xpath('//h1[@id=\"main_title\"]/text()').extract() content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract() # 将p标签里的文本内容合并到一起 for content_one in content_list: content += content_one item['head']= head[0] if len(head) > 0 else "NULL" item['content']= content yield item
执行:
slave端: scrapy runspider sina.py Master端: redis-cli> lpush sinaspider:start_urls http://news.sina.com.cn/guide/