Linux设备驱动中的阻塞与非阻塞I/O
阻塞与非阻塞I/O
阻塞操作是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
因为阻塞的进程会进入休眠状态,因此,必须确保有一个地方能够唤醒休眠的进程。唤醒进程的地方最大可能发生在中断里面,因为硬件资源获得的同时往往伴随着一个中断。
注意:驱动程序需要提供阻塞(等待队列,中断)和非阻塞方式(轮询,异步通知)访问设备。
休眠(被阻塞)的进程处于一个特殊的不可执行状态。这点非常重要,否则,没有这种特殊状态的话,调度程序就可能选出一个本不愿意被执行的进程,更糟糕的是,休眠就必须以轮询的方式实现了。进程休眠有各种原因,但肯定都是为了等待一些事件。事件可能是一段时间、从文件I/O读更多数据,或者是某个硬件事件。一个进程还有可能在尝试获得一个已经占用的内核信号量时*进入休眠。休眠的一个常见原因就是文件I/O -- 如进程对一个文件执行了read()操作,而这需要从磁盘里读取。还有,进程在获取键盘输入的时候也需要等待。无论哪种情况,内核的操作都相同:进程把它自己标记成休眠状态,把自己从可执行队列移出,放入等待队列,然后调用schedule()选择和执行一个其他进程。唤醒的进程刚好相反:进程被设置为可执行状态,然后再从等待队列中移到可执行队列。
休眠有两种相关的进程状态:TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE。它们的惟一区别是处于TASK_UNINTERRUPTIBLE状态的进程会忽略信号,而处于TASK_INTERRUPTIBLE状态的进程如果收到信号会被唤醒并处理信号(然后再次进入等待睡眠状态)。两种状态的进程位于同一个等待队列上,等待某些事件,不能够运行。
休眠通过等待队列进行处理。等待队列是由等待某些事件发生的进程组成的简单链表。内核用wake_queue_head_t来代表等待队列。等待队列可以通过DECLARE_WAITQUEUE()静态创建,也可以有init_waitqueue_head()动态创建。进程把自己放入等待队列中并设置成不可执行状态。等与等待队列相关的事件发生的时候,队列上的进程会被唤醒。为了避免产生竞争条件,休眠和唤醒的实现不能有纰漏。
等待队列
在Linux驱动程序中,可以使用等待队列来实现阻塞进程的唤醒。
进程通过执行下面几步将自己加入到一个等待队列中:
当然,首先是定义等待队列头,并初始化:
wait_queue_head_t wait;
init_waitqueue_head(&wait);
1. 调用DECLARE_WAITQUEUE()创建一个等待队列的项
|------------------------------------------------|
|/* 'q' is the wait queue we wish to sleep on */ |
|DECLARE_WAITQUEUE(wait, current); |
|------------------------------------------------|
2. 调用add_wait_queue()把自己加入到队列中。该队列在进程等待的条件满足时唤醒它。当然我们必须在其他地方撰写相关代码,在事件发生时,对等待队列执行wake_up()操作
|-----------------------------|
|add_wait_queue(q, &wait); |
|-----------------------------|
while (!condition) { /* condition is the event that we are waiting for */
3. 将进程的状态变更为TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
|----------------------------------------------|
| /* or TASK_UNINTERRUPTIBLE */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
|----------------------------------------------|
4. 如果状态被设置为TASK_INTERRUPTIBLE,则信号可以唤醒进程(信号和事件都可以唤醒该进程)。这就是所谓的伪唤醒(唤醒不是因为事件的发生,而是由信号唤醒的),因此检查并处理信号。
注: 信号和等待事件都可以唤醒处于TASK_INTERRUPTIBLE状态的进程,信号唤醒该进程为伪唤醒;该进程被唤醒后,如果(!condition)结果为真,则说明该进程不是由等待事件唤醒的,而是由信号唤醒的。所以该进程处理信号后将再次让出CPU控制权
|----------------------------------------------|
| if (signal_pending(current)) |
| /* handle signal */ |
|----------------------------------------------|
5. Tests whether the condition is true. If it is, there is no need to sleep. If it is not true, the task calls schedule().
本进程在此处交出CPU控制权,如果该进程再次被唤醒,将从while循环结尾处继续执行,因而将回到while循环的开始处while (!condition),进测等待事件是否真正发生.
|----------------------------------------------|
| schedule(); |
|----------------------------------------------|
}
6. Now that the condition is true, the task can set itself to TASK_RUNNING and remove itself from the wait queue via remove_wait_queue().
|----------------------------------------------|
|set_current_state(TASK_RUNNING); |
|remove_wait_queue(q, &wait); |
|----------------------------------------------|
另外,在程序中必须有唤醒等待队列的机制:
Wake_up_interruptible(&q);
轮询操作
轮询的概念与作用
使用非阻塞I/O的应用程序通常会使用select()和poll()系统调用查询是否可对设备进行无阻塞的访问。select()和poll()系统调用最终会引发设备驱动中的poll()函数被执行。
select()和poll()系统调用的本质一样,前者在BSD UNIX中引入,后者在System V中引入。
应用程序中的轮询编程
int select(int numfds,fd_set *readfds, fd_set *writefds, fd_set *exceptfds,struct timeval *timeout);
文件描述符集合操作:FD_ZERO(fd_set *set) FD_SET(int fd, fd_set *set)
FD_CLR(int fd, fd_set *set) FD_ISSET(int fd, fd_set *set)
设备驱动中的轮询编程
unsigned int (*poll)(struct file *filp, struct poll_table *wait);
void poll_wait(struct file *filp, wait_queue_head_t *queue, struct poll_table *wait);
poll()函数的典型模板:
static unsigned int xxx_poll(struct file *filp, poll_table *wait)
{
unsigned int mask = O;
struct xxx_dev *dev - filp->private_data;//获取设备接构体指针
.....
poll_wait (filp, &dev->r_wait, wait);//加读等待队列头
poll_wait (filp, &dev->w_ait, waitl);//加写等待队列头
if(...) //可读
{
mask |=POLLIN|POLLRDNORM; //标志数据可获得
}
if(...) //可写
{
mask |=POLLOUT|POLLRDNORM; //标志数据可写入
}
...
return mask;
}
本文转自feisky博客园博客,原文链接:http://www.cnblogs.com/feisky/archive/2010/06/01/1749288.html,如需转载请自行联系原作者