阻塞与非阻塞是设备访问的两种方式。在写阻塞与非阻塞的驱动程序时,经常用到等待队列。
一、阻塞与非阻塞
阻塞调用是指调用结果返回之前,当前线程会被挂起,函数只有在得到结果之后才会返回。
非阻塞指不能立刻得到结果之前,该函数不会阻塞当前进程,而会立刻返回。
对象是否处于阻塞模式和函数是不是阻塞调用有很强的相关性,但并不是一一对应的。阻塞对象上可以有非阻塞的调用方式,我们可以通过一定的API去轮询状态,在适当的时候调用阻塞函数,就可以避免阻塞。而对于非阻塞对象,调用的函数也可以进入阻塞调用。函数select()就是这样一个例子。
二、等待队列
在linux设备驱动程序中,阻塞进程可以使用等待队列来实现。
在内核中,等待队列是有很多用处的,尤其是在中断处理,进程同步,定时等场合,可以使用等待队列实现阻塞进程的唤醒。它以队列为基础数据结构,与进程调度机制紧密结合,能够用于实现内核中的异步事件通知机制,同步对系统资源的访问。
1、等待队列的实现:
在linux中,等待队列的结构如下:
struct __wait_queue_head { spinlock_t lock; //自旋锁,用来对task_list链表起保护作用,实现了对等待队列的互斥访问 struct list_head task_list; //用来存放等待的进程 }; typedef struct __wait_queue_head wait_queue_head_t;
2、等待队列的使用
(1)定义和初始化等待队列:
wait_queue_head_t wait;//定义等待队列 init_waitqueue_head(&wait);//初始化等待队列 定义并初始化等待队列: #define DECLARE_WAIT_QUEUE_HEAD(name) wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
(2)添加或移除等待队列:
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);//将等待队列元素wait添加到等待队列头q所指向的等待队列链表中。 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
(3)等待事件:
wait_event(wq, condition);//在等待队列中睡眠直到condition为真。 wait_event_timeout(wq, condition, timeout); wait_event_interruptible(wq, condition) ; wait_event_interruptible_timeout(wq, condition, timeout) ; /* * queue:作为等待队列头的等待队列被唤醒 * conditon:必须满足,否则阻塞 * timeout和conditon相比,有更高优先级 */
(4)睡眠:
sleep_on(wait_queue_head_t *q); interruptible_sleep_on(wait_queue_head_t *q); /* sleep_on作用是把目前进程的状态置成TASK_UNINTERRUPTIBLE,直到资源可用,q引导的等待队列被唤醒。 interruptible_sleep_on作用是一样的, 只不过它把进程状态置为TASK_INTERRUPTIBLE */
(5)唤醒等待队列:
//可唤醒处于TASK_INTERRUPTIBLE和TASK_UNINTERRUPTIBLE状态的进程; #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL) //只能唤醒处于TASK_INTERRUPTIBLE状态的进程 #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
三、操作系统中睡眠、阻塞、挂起的区别形象解释
首先这些术语都是对于线程来说的。对线程的控制就好比你控制了一个雇工为你干活。你对雇工的控制是通过编程来实现的。
挂起线程的意思就是你对主动对雇工说:“你睡觉去吧,用着你的时候我主动去叫你,然后接着干活”。
使线程睡眠的意思就是你主动对雇工说:“你睡觉去吧,某时某刻过来报到,然后接着干活”。
线程阻塞的意思就是,你突然发现,你的雇工不知道在什么时候没经过你允许,自己睡觉呢,但是你不能怪雇工,肯定你这个雇主没注意,本来你让雇工扫地,结果扫帚被偷了或被邻居家借去了,你又没让雇工继续干别的活,他就只好睡觉了。至于扫帚回来后,雇工会不会知道,会不会继续干活,你不用担心,雇工一旦发现扫帚回来了,他就会自己去干活的。因为雇工受过良好的培训。这个培训机构就是操作系统。
四、阻塞与非阻塞操作
阻塞操作是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后在进行操作。
非阻塞操作的进程在不能进行设备操作时并不挂起,它或者被放弃,或者不停的查询,直到可以进行操作为止。
回顾简单字符设备驱动, 我们看到如何实现 read 和 write 方法. 在此, 但是, 我们跳过了一个重要的问题:一个驱动当它无法立刻满足请求应当如何响应? 一个对 read 的调用可能当没有数据时到来, 而以后会期待更多的数据. 或者一个进程可能试图写, 但是你的设备没有准备好接受数据, 因为你的输出缓冲满了. 调用进程往往不关心这种问题; 程序员只希望调用 read 或 write 并且使调用返回, 在必要的工作已完成后. 这样, 在这样的情形中, 你的驱动应当(缺省地)阻塞进程, 使它进入睡眠直到请求可继续。
在我们看全功能的 read 和 write 方法的实现之前, 我们触及的最后一点是决定何时使进程睡眠.
(1)阻塞型驱动中,read实现方式:如果一个进程调用 read 但是没有数据可用, 这个进程必须阻塞. 这个进程在有数据达到时被立刻唤醒, 并且那个数据被返回给调用者, 即便小于在给方法的 count 参数中请求的数量.
(2)阻塞型驱动中,write实现方式:如果一个进程调用 write 并且在缓冲中没有空间, 这个进程必须阻塞, 并且它必须在一个与用作 read 的不同的等待队列中. 当一些数据被写入硬件设备, 并且在输出缓冲中的空间变空闲, 这个进程被唤醒并且写调用成功, 尽管数据可能只被部分写入如果在缓冲只没有空间给被请求的 count 字节.
(3)有时要求一个操作不阻塞, 即便它不能完全地进行下去.应用程序元可以调用 filp->f_flags 中的 O_NONBLOCK 标志来人为的设置读写操作为非阻塞方式. 这个标志定义于 <linux/fcntl.h>, 被 <linux/fs.h>自动包含.
五、阻塞型驱动测试程序:
1.memdev.h
#ifndef _MEMDEV_H_ #define _MEMDEV_H_ #ifndef MEMDEV_MAJOR #define MEMDEV_MAJOR 0 /*预设的mem的主设备号*/ #endif #ifndef MEMDEV_NR_DEVS #define MEMDEV_NR_DEVS 2 /*设备数*/ #endif #ifndef MEMDEV_SIZE #define MEMDEV_SIZE 4096 #endif
/*mem设备描述结构体*/ struct mem_dev { char *data; unsigned long size; wait_queue_head_t inq; }; #endif /* _MEMDEV_H_ */
2.memdev.c
#include <linux/module.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/cdev.h> #include <asm/io.h> #include <asm/system.h> #include <asm/uaccess.h> #include "memdev.h"
static mem_major = MEMDEV_MAJOR; bool have_data = false; /*表明设备有足够数据可供读*/ module_param(mem_major, int, S_IRUGO); struct mem_dev *mem_devp; /*设备结构体指针*/ struct cdev cdev; /*文件打开函数*/ int mem_open(struct inode *inode, struct file *filp) { struct mem_dev *dev; /*获取次设备号*/ int num = MINOR(inode->i_rdev); if (num >= MEMDEV_NR_DEVS) return -ENODEV; dev = &mem_devp[num]; /*将设备描述结构指针赋值给文件私有数据指针*/ filp->private_data = dev; return 0; } /*文件释放函数*/ int mem_release(struct inode *inode, struct file *filp) { return 0; } /*读函数*/ static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) { unsigned long p = *ppos; unsigned int count = size; int ret = 0; struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*判断读位置是否有效*/ if (p >= MEMDEV_SIZE) return 0; if (count > MEMDEV_SIZE - p) count = MEMDEV_SIZE - p; while (!have_data) /* 没有数据可读,考虑为什么不用if,而用while,中断信号唤醒 */ { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; wait_event_interruptible(dev->inq,have_data); } /*读数据到用户空间*/ if (copy_to_user(buf, (void*)(dev->data + p), count)) { ret = - EFAULT; } else { *ppos += count; ret = count; printk(KERN_INFO "read %d bytes(s) from %d\n", count, p); } have_data = false; /* 表明不再有数据可读 */ return ret; } /*写函数*/ static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos) { unsigned long p = *ppos; unsigned int count = size; int ret = 0; struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*分析和获取有效的写长度*/ if (p >= MEMDEV_SIZE) return 0; if (count > MEMDEV_SIZE - p) count = MEMDEV_SIZE - p; /*从用户空间写入数据*/ if (copy_from_user(dev->data + p, buf, count)) ret = - EFAULT; else { *ppos += count; ret = count; printk(KERN_INFO "written %d bytes(s) from %d\n", count, p); } have_data = true; /* 有新的数据可读 */ /* 唤醒读进程 */ wake_up(&(dev->inq)); return ret; } /* seek文件定位函数 */ static loff_t mem_llseek(struct file *filp, loff_t offset, int whence) { loff_t newpos; switch(whence) { case 0: /* SEEK_SET */ newpos = offset; break; case 1: /* SEEK_CUR */ newpos = filp->f_pos + offset; break; case 2: /* SEEK_END */ newpos = MEMDEV_SIZE -1 + offset; break; default: /* can't happen */ return -EINVAL; } if ((newpos<0) || (newpos>MEMDEV_SIZE)) return -EINVAL; filp->f_pos = newpos; return newpos; } /*文件操作结构体*/ static const struct file_operations mem_fops = { .owner = THIS_MODULE, .llseek = mem_llseek, .read = mem_read, .write = mem_write, .open = mem_open, .release = mem_release, }; /*设备驱动模块加载函数*/ static int memdev_init(void) { int result; int i; dev_t devno = MKDEV(mem_major, 0); /* 静态申请设备号*/ if (mem_major) result = register_chrdev_region(devno, 2, "memdev"); else /* 动态分配设备号 */ { result = alloc_chrdev_region(&devno, 0, 2, "memdev"); mem_major = MAJOR(devno); } if (result < 0) return result; /*初始化cdev结构*/ cdev_init(&cdev, &mem_fops); cdev.owner = THIS_MODULE; cdev.ops = &mem_fops; /* 注册字符设备 */ cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS); /* 为设备描述结构分配内存*/ mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL); if (!mem_devp) /*申请失败*/ { result = - ENOMEM; goto fail_malloc; } memset(mem_devp, 0, sizeof(struct mem_dev)); /*为设备分配内存*/ for (i=0; i < MEMDEV_NR_DEVS; i++) { mem_devp[i].size = MEMDEV_SIZE; mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL); memset(mem_devp[i].data, 0, MEMDEV_SIZE); /*初始化等待队列*/ init_waitqueue_head(&(mem_devp[i].inq)); } return 0; fail_malloc: unregister_chrdev_region(devno, 1); return result; } /*模块卸载函数*/ static void memdev_exit(void) { cdev_del(&cdev); /*注销设备*/ kfree(mem_devp); /*释放设备结构体内存*/ unregister_chrdev_region(MKDEV(mem_major, 0), 2); /*释放设备号*/ } MODULE_AUTHOR("David Xie"); MODULE_LICENSE("GPL"); module_init(memdev_init); module_exit(memdev_exit);
3.app-write.c
#include <stdio.h> int main() { FILE *fp = NULL; char Buf[128]; /*打开设备文件*/ fp = fopen("/dev/memdev0","r+"); if (fp == NULL) { printf("Open Dev memdev0 Error!\n"); return -1; } /*写入设备*/ strcpy(Buf,"memdev is char dev!"); printf("Write BUF: %s\n",Buf); fwrite(Buf, sizeof(Buf), 1, fp); sleep(5); fclose(fp); return 0; }
4.app-read.c
#include <stdio.h> int main() { FILE *fp = NULL; char Buf[128]; /*初始化Buf*/ strcpy(Buf,"memdev is char dev!"); printf("BUF: %s\n",Buf); /*打开设备文件*/ fp = fopen("/dev/memdev0","r+"); if (fp == NULL) { printf("Open memdev0 Error!\n"); return -1; } /*清除Buf*/ strcpy(Buf,"Buf is NULL!"); printf("Read BUF1: %s\n",Buf); /*读出数据*/ fread(Buf, sizeof(Buf), 1, fp); /*检测结果*/ printf("Read BUF2: %s\n",Buf); fclose(fp); return 0; }