大数据处理框架之Strom:容错机制

1、集群节点宕机
Nimbus服务器
  单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可
非Nimbus服务器
  故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行

2、进程挂掉
Worker
  挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上
Supervisor
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)
Nimbus
  无状态(所有的状态信息都存放在Zookeeper中来管理)
  快速失败(每当遇到任何异常情况,都会自动毁灭)

3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)
Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。

看下面的例子:

MessageSpout  ---->   split-bolt  ---->    write-bolt

MessageTopology
package bhz.topology;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import bhz.bolt.SpliterBolt;
import bhz.bolt.WriterBolt;
import bhz.spout.MessageSpout; public class MessageTopology { public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new MessageSpout());
builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout");
builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt");
//本地配置
Config config = new Config();
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
System.out.println(cluster);
cluster.submitTopology("message", config, builder.createTopology());
Thread.sleep(10000);
cluster.killTopology("message");
cluster.shutdown();
}
}

MessageSpout

package bhz.spout;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{
"groovy,oeacnbase",
"openfire,restful",
"flume,activiti",
"hadoop,hbase",
"spark,sqoop"
}; private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} @Override
public void nextTuple() {
if(index < subjects.length){
String sub = subjects[index];
//发送信息参数1 为数值, 参数2为msgId
collector.emit(new Values(sub), index);
index++;
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("subjects"));
}
//当bolt 处理成功 ack确认 spout执行ack方法
@Override
public void ack(Object msgId) {
System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")");
}
//当bolt处理失败时,spout调用fail方法,进行重发处理
@Override
public void fail(Object msgId) {
System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")");
System.out.println("【重发进行中...】");
collector.emit(new Values(subjects[(Integer) msgId]), msgId);
System.out.println("【重发成功!!!】");
} @Override
public void close() { } @Override
public void activate() { } @Override
public void deactivate() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

SpliterBolt

package bhz.bolt;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
try {
String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){
flag = true;
int a = 1/0;
} String[] words = subjects.split(",");
//List<String> list = new ArrayList<String>();
//int index = 0;
for (String word : words) {
//注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略
collector.emit(tuple, new Values(word));
//list.add(word);
//index ++;
}
//collector.emit(tuple, new Values(list));
collector.ack(tuple);//通知spout处理成功
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout 处理失败
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} @Override
public void cleanup() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

WriterBolt

package bhz.bolt;

import java.io.FileWriter;
import java.io.IOException;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
try {
writer = new FileWriter("d://message.txt");
} catch (IOException e) {
e.printStackTrace();
}
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
String word = tuple.getString(0);
// List<String> list = (List<String>)tuple.getValueByField("word");
// System.out.println("======================" + list);
try {
if(!flag && word.equals("hadoop")){
flag = true;
int a = 1/0;
}
writer.write(word);
writer.write("\r\n");
writer.flush();
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout处理失败
}
collector.emit(tuple, new Values(word));
collector.ack(tuple);//通知spout处理成功
} @Override
public void cleanup() { } @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }

spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。

上一篇:从mysql数据库中查询最新的一条数据的方法


下一篇:day 31 进程的其他方法 进程锁 进程队列