pandas的札记

导入导出数据

在导入,导出DataFrame数据时,会用到各种格式,分为 to_csv ;to_excel;to_hdf;to_sql;to_json;to_msgpack ;to_html;to_gbq ;to_stata;to_clipboard;to_pickle

可参照IO Tools分类。

输出指定colums是,会用到arg colums,例如

to_csv(filename,columns=["col1","col2"],......)
# 此处注意的是要使用双引号,单引号不起效果,不知道为什么,另外
# index,header设置为False会不写入行号(索引好)和列标
#也可如下方式使用list函数
to_csv(filename,columns = list('col1','col2'),......)

如果想要保存为ascii文本则可以使用to_csv,可以对是否保存索引(行号)等参数进设置。

调换colums顺序

若原始数据是这样的:

In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593 In [7]: cols = df.columns.tolist() In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']

通过调换columns更改顺序

In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]

进而可以达到如下效果

In [16]: df = df[cols]  #    OR    df = df.ix[:, cols]

In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399

参考来源

pandas DataFrame 中指定位置数据的修改:

df['one']['second'] = value
# 由于DataFrame在索引数据是得到的是副本copy所以,此时原数据df并没有修改,并会抛出警告Warning: SettingWithCopy df.loc['one','second'] = value
#如上会修改原数据df
#或是:
dfmi.loc[:,('one','second')] = value

具体参考SettingWithCopy

pandas DataFrame & Series 遍历数据(loop iterate on data)

DataFrame

 dates = pd.date_range("",periods=3)
df = pd.DataFrame(np.random.randn(3,4),index = dates,columns=['A','B','C','D'])
df
dates = pd.date_range("",periods=3)
df = pd.DataFrame(np.random.randn(3,4),index = dates,columns=['A','B','C','D'])
df
Out[36]:
A B C D
2015-01-01 -0.888495 -0.983042 0.162524 -0.768370
2015-01-02 0.954982 0.777860 -0.635805 -0.271617
2015-01-03 1.778827 1.052819 0.090116 -1.822029
  1. DataFrame.iteritems()    :Iterator over (column name, Series) pairs.
     for colName,colSeries in df.iteritems():
    print colName
    print colSeries
     A
    2015-01-01 -0.888495
    2015-01-02 0.954982
    2015-01-03 1.778827
    Freq: D, Name: A, dtype: float64
    B
    2015-01-01 -0.983042
    2015-01-02 0.777860
    2015-01-03 1.052819
    Freq: D, Name: B, dtype: float64
    C
    2015-01-01 0.162524
    2015-01-02 -0.635805
    2015-01-03 0.090116
    Freq: D, Name: C, dtype: float64
    D
    2015-01-01 -0.768370
    2015-01-02 -0.271617
    2015-01-03 -1.822029
    Freq: D, Name: D, dtype: float64
  2. DataFrame.iterrows()    :Iterate over the rows of a DataFrame as (index, Series) pairs. 数据一致是对列来说的,所以此方法迭代时数据类型会改变,如果想使用原始数据类型,最好使用itertuples,且速度快于Itetuples.
     for index,rowSeries in df.iterrows():
    print index
    print rowSeries
     2015-01-01 00:00:00
    A -0.888495
    B -0.983042
    C 0.162524
    D -0.768370
    Name: 2015-01-01 00:00:00, dtype: float64
    2015-01-02 00:00:00
    A 0.954982
    B 0.777860
    C -0.635805
    D -0.271617
    Name: 2015-01-02 00:00:00, dtype: float64
    2015-01-03 00:00:00
    A 1.778827
    B 1.052819
    C 0.090116
    D -1.822029
    Name: 2015-01-03 00:00:00, dtype: float64

     

  3. DataFrame.itertuples(index=True)    :Iterate over the rows of DataFrame as tuples, with index value as first element of the tuple.
     for rowTuple in df.itertuples():
    print rowTuple[0]
    print rowTuple[1:]
     2015-01-01 00:00:00
    (-0.88849501182393553, -0.98304167749573845, 0.1625244406175089, -0.76836987403165646)
    2015-01-02 00:00:00
    (0.95498214900986345, 0.77786021238601544, -0.635805031818656, -0.27161684716624435)
    2015-01-03 00:00:00
    (1.7788269763069902, 1.0528194112440166, 0.09011643978723563, -1.82202928954011)

Series

  1. Series.iteritems()                           :Lazily iterate over (index, value) tuples
     In [51]:
    
     s = pd.Series(['a','b','c','d','e'])
    s
    s = pd.Series(['a','b','c','d','e'])
    s
    Out[51]:
    0 a
    1 b
    2 c
    3 d
    4 e
    dtype: object
     for index,value in s.iteritems():
    print index,value
    0 a
    1 b
    2 c
    3 d
    4 e
上一篇:完整的java字符串编码转换代码


下一篇:java中的字符,字节和编码