【图像配准】基于粒子群改进的sift图像配准matlab源码

1 基于粒子群改进的sift图像配准

模型参考这里

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
​
​
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
​
​
close all;
​
clear all;
​
​
%% image path
​
file_image='';
​
​
%% read two images
​
[filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Select reference image',...
​
file_image);
​
image_1=imread(strcat(pathname,filename));
​
[filename,pathname]=uigetfile({'*.*','All Files(*.*)'},'Select the image to be registered',...
​
file_image);
​
image_2=imread(strcat(pathname,filename));
​
​
%% Display the reference image and the image to be registered
​
figure;
​
subplot(1,2,1);
​
imshow(image_1);
​
title('Reference image');
​
subplot(1,2,2);
​
imshow(image_2);
​
title('Image to be registered');
​
​
%% make file for save images
​
if (exist('save_image','dir')==0)%如果文件夹不存在
​
mkdir('save_image');
​
end
​
​
t1=clock;%Start time
​
%% Convert input image format
​
[~,~,num1]=size(image_1);
​
[~,~,num2]=size(image_2);
​
if(num1==3)
​
image_11=rgb2gray(image_1);
​
else
​
image_11=image_1;
​
end
​
if(num2==3)
​
image_22=rgb2gray(image_2);
​
else
​
image_22=image_2;
​
end
​
​
%Converted to floating point data between 0-1
​
image_11=im2double(image_11);
​
image_22=im2double(image_22);
​
​
%% Define the constants used
​
sigma=1.6;%Bottom Gauss Pyramid scale
​
dog_center_layer=3;%Defines the DOG Pyramid intermediate layer, the default is 3
​
contrast_threshold_1=0.04;%Contrast threshold of reference image
​
contrast_threshold_2=0.04;%Contrast threshold of the image to be registered
​
edge_threshold=10;%Edge threshold
​
is_double_size=false;%Whether the image size is enlarged,the default is 'false',to get more points, set it to 'true'
​
change_form='similarity';%Select geometric transformation type,it can be 'similarity','affine'
​
​
%% The number of groups in Gauss Pyramid
​
nOctaves_1=num_octaves(image_11,is_double_size);
​
nOctaves_2=num_octaves(image_22,is_double_size);
​
​
%% Generation of the first layer of the Gauss scale image
​
image_11=create_initial_image(image_11,is_double_size,sigma);
​
image_22=create_initial_image(image_22,is_double_size,sigma);
​
​
%% Generating Gauss Pyramid of reference image
​
tic;
​
[gaussian_pyramid_1,gaussian_gradient_1,gaussian_angle_1]=...
​
build_gaussian_pyramid(image_11,nOctaves_1,dog_center_layer,sigma);
​
disp(['Reference image generation Gauss Pyramid spent time is:',num2str(toc),'s']);
​
​
%% Generating DOG Pyramid of reference image
​
tic;
​
dog_pyramid_1=build_dog_pyramid(gaussian_pyramid_1,nOctaves_1,dog_center_layer);
​
disp(['Reference image generation DOG Pyramid spent time is:',num2str(toc),'s']);
​
clear gaussian_pyramid_1;
​
​
%% Search for extreme points in the DOG Pyramid of the reference image
​
tic;
​
[key_point_array_1]=find_scale_space_extream...
​
(...
​
dog_pyramid_1,...
​
nOctaves_1,...
​
dog_center_layer,...
​
contrast_threshold_1,...
​
sigma,...
​
edge_threshold,...
​
gaussian_gradient_1,...
​
gaussian_angle_1...
​
);
​
disp(['The extreme points of the reference image detection spend time is:',num2str(toc),'s']);
​
clear dog_pyramid_1;
​
​
%% The feature point descriptor generation,Reference image
​
tic;
​
[descriptors_1,locs_1]=calc_descriptors(gaussian_gradient_1,gaussian_angle_1,.....
​
key_point_array_1,is_double_size);
​
disp(['Reference image feature point descriptor generation spend time is:',num2str(toc),'s']);
​
clear gaussian_gradient_1;
​
clear gaussian_angle_1;
​
​
​
%% Generating Gauss Pyramid of the image to be registered
​
tic;
​
[gaussian_pyramid_2,gaussian_gradient_2,gaussian_angle_2]=...
​
build_gaussian_pyramid(image_22,nOctaves_2,dog_center_layer,sigma);
​
disp(['The image to be registered generation Gauss Pyramid spent time is:',num2str(toc),'s']);
​
​
%% Generating DOG Pyramid of the image to be registered
​
tic;
​
dog_pyramid_2=build_dog_pyramid(gaussian_pyramid_2,nOctaves_2,dog_center_layer);
​
disp(['The image to be registered generation DOG Pyramid spent time is::',num2str(toc),'s']);
​
clear gaussian_pyramid_2;
​
​
%% Search for extreme points int the DOG Pyramid of the image to be registered
​
tic;
​
[key_point_array_2]=find_scale_space_extream...
​
(...
​
dog_pyramid_2,...
​
nOctaves_2,...
​
dog_center_layer,...
​
contrast_threshold_2,...
​
sigma,...
​
edge_threshold,...
​
gaussian_gradient_2,...
​
gaussian_angle_2...
​
);
​
disp(['The extreme points of the image to be registered detection spend time is:',num2str(toc),'s']);
​
clear dog_pyramid_2;
​
​
%% The feature point descriptor generation,the image to be registered
​
tic;
​
[descriptors_2,locs_2]=calc_descriptors(gaussian_gradient_2,gaussian_angle_2,...
​
key_point_array_2,is_double_size);
​
disp(['The image to be registered feature point descriptor generation spend time is:',num2str(toc),'s']);
​
clear gaussian_gradient_2;
​
clear gaussian_angle_2;
​
​
%% Calculation of geometric transformation parameters
​
tic;
​
[solution,~,cor1,cor2]=...
​
match(image_2, image_1,descriptors_2,locs_2,descriptors_1,locs_1,change_form);
​
disp(['Feature point matching spend time is:',num2str(toc),'s']);
​
​
tform=maketform('projective',solution');
​
[M,N,P]=size(image_1);
​
ff=imtransform(image_2,tform, 'XData',[1 N], 'YData',[1 M]);
​
button=figure;
​
subplot(1,2,1);
​
imshow(image_1);
​
title('Reference image');
​
subplot(1,2,2);
​
imshow(ff);
​
title('Image after registration');
​
str1=['.\save_image\','Results after registration','.jpg'];
​
saveas(button,str1,'jpg');
​
t2=clock;
​
disp(['Total spending time is:',num2str(etime(t2,t1)),'s']);
​
​
%% Display the detected feature points on the image
​
[button1,button2]=showpoint_detected(image_1,image_2,locs_1,locs_2);
​
str1=['.\save_image\','Reference image detection point','.jpg'];
​
saveas(button1,str1,'jpg');
​
str1=['.\save_image\','Points detected in the image to be registered','.jpg'];
​
saveas(button2,str1,'jpg');
​
​
%% Image fusion
​
image_fusion(image_1,image_2,solution);

【图像配准】基于粒子群改进的sift图像配准matlab源码

3 仿真结果

  1. 【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

【图像配准】基于粒子群改进的sift图像配准matlab源码【图像配准】基于粒子群改进的sift图像配准matlab源码

4 参考文献

[1]冯林, 张名举, 贺明峰,等. 用改进的粒子群算法实现多模态刚性医学图像的配准[J]. 计算机辅助设计与图形学学报, 2004(09):1269-1274.

5 代码下载

获取代码方式1:

完整代码已上传我的资源

获取代码方式2:

通过订阅博主博客付费专栏,凭支付凭证,私信博主,可获得此代码。

博主擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真

上一篇:java多态instanceof介绍


下一篇:zdog 伪3D引擎