批量插入优化
在网上找了一些插入大量数据性能优化资料,提到了比较重要的一点是将
- insert into tablename(f1,f2,...) values (d1,d2,...);
- insert into tablename(f1,f2,...) values (d1,d2,...);
- ...
这样的单条单条的insert语句改造成
- insert into tablename(f1,f2,...) values (d1,d2,...),(d1,d2,...),(d1,d2,...);
这种一次insert多条记录,性能会提升比较明显,所以我就开始试验这种方法,将每条记录在代码里循环拼接成一条原生insert语句再进行插入(想想感觉可行性很高),拼接完成后依然继续插入五万条数据,拼接出来的sql语句就成了
- insert into tablename(f1,f2,...) values (d1,d2,...),(d1,d2,...),(d1,d2,...)...;//此处省略了49997条记录
浏览器运行插入数据的页面,bong...,提示MySQL server has gone away!,mysql崩溃了。蛋疼~!然后寻思着将这五万条数据分批次进行插入,这样就不会产生数据库崩溃的情况,所以我将这五万条数据按照五千个一组分批插入,最后再运行这个页面,bong...五万条数据两秒之内就给全部插入进去了,两秒。。(这里已经去掉了前面加上的 ini_set('memory_limit','1024M');)效率跟之前比提高了几十倍,瞬间感觉整个人都变好了。又试了再插入三万条数据,1秒 之内搞定。下面贴出部分参考代码
- <?php
- //下面是大于5000条数据拼接算法
- $chu = floor($count / 5000); //取整
- for ($i = 0; $i < $chu; $i++) {
- //每5000条数据组成一个insert语句,$codeModel是存放记录的一个数组
- $values = '';
- for ($j = $i * 5000; $j < ($i + 1) * 5000; $j++) {
- //拼接values的值
- $values .= '(' . $codeModel[$j]['rid'] . ',' . $codeModel[$j]['cid'] . ',"' . $codeModel[$j]['regcode'] . '",0,' . $codeModel[$j]['status'] . ',0,' . time() . '),';
- }
- $values = "insert into w_code (rid,cid,regcode,used_times,status,reason_id,created_at) values" . substr($values, 0, -1) . ';';
- Yii::$app->db->createCommand($values)->execute();
- }
- //下面是小于5000条数据拼接算法
- $yu = $count % 5000; //取余
- for ($k = 0; $k < $yu; $k++) {
- //echo "k:" . $k . "<br/>";
- }
另外,这些代码外层都放了事务回滚的!将多条insert放入事务中也会提升一点数据插入的性能!
将数据放到文件中,使用load data infile
- select * into outfile 'ddd.txt' fields terminated by ',' from dn_location;
- load data infile 'ddd.txt' into table dn_location2 FIELDS TERMINATED BY ',';
通过该方法导出的数据,是将各字段(只有数据,不导出表结构)数据存在一个文件中,中间以逗号分隔,因为文件中并不包含数据库名或者表名,因此需要在导入导出的时候些明确。该方法在18分钟内导出1.6亿条记录,46min内导入6472W条记录,平均速度:8442W条/h。mysql官方文档也说明了,该方法比一次性插入一条数据性能快20倍。
删除表大量数据
假设有一个表(syslogs)有1000万条记录,需要在业务不停止的情况下删除其中statusid=1的所有记录,差不多有600万条,直接执行
- DELETE FROM syslogs WHERE statusid=1
会发现删除失败,因为lock wait timeout exceed的错误。因为这条语句所涉及的记录数太多,因此我们通过LIMIT参数分批删除,比如每10000条进行一次删除,那么我们可以利用 MySQL这样的语句来完成
- DELETE FROM syslogs WHERE status=1 ORDER BY statusid LIMIT 10000;
然后分多次执行就可以把这些记录成功删除。
delete命令根本不会回收空间,也就是说之前假如这个文件占了100G ,delete后,文件大小没有改变。当全表扫描的时候,还是扫这么多的数据块。当执行完alter table 命令后,它会回收空间。假如删了80G,它的物理文件会只占20G空间。
- alter table table_name engine=innodb;
当您的库中删除了大量的数据后,您可能会发现数据文件尺寸并没有减小。这是因为删除操作后在数据文件中留下碎片所致。OPTIMIZE TABLE 是指对表进行优化。如果已经删除了表的一大部分数据,或者如果已经对含有可变长度行的表(含有 VARCHAR 、 BLOB 或 TEXT 列的表)进行了很多更改,就应该使用 OPTIMIZE TABLE 命令来进行表优化。这个命令可以将表中的空间碎片进行合并,并且可以消除由于删除或者更新造成的空间浪费 。OPTIMIZE TABLE 命令只对 MyISAM 、 BDB 和 InnoDB 表起作用 。表优化的工作可以每周或者每月定期执行,对提高表的访问效率有一定的好处,但是需要注意的是,优化表期间会锁定表,所以一定要安排在空闲时段进行。
一,原始数据
- mysql> select count(*) as total from ad_visit_history;
- +---------+
- | total |
- +---------+
- | 1187096 | //总共有118万多条数据
- +---------+
- 1 row in set (0.04 sec)
2,存放在硬盘中的表文件大小
- [root@BlackGhost test1]# ls |grep visit |xargs -i du {}
- 382020 ad_visit_history.MYD //数据文件占了380M
- 127116 ad_visit_history.MYI //索引文件占了127M
- 12 ad_visit_history.frm //结构文件占了12K
3,查看一下索引信息
- mysql> show index from ad_visit_history from test1; //查看一下该表的索引信息
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | ad_visit_history | 0 | PRIMARY | 1 | id | A | 1187096 | NULL | NULL | | BTREE | |
- | ad_visit_history | 1 | ad_code | 1 | ad_code | A | 46 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | unique_id | 1 | unique_id | A | 1187096 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ad_code_ind | 1 | ad_code | A | 46 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | from_page_url_ind | 1 | from_page_url | A | 30438 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ip_ind | 1 | ip | A | 593548 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | port_ind | 1 | port | A | 65949 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | session_id_ind | 1 | session_id | A | 1187096 | NULL | NULL | YES | BTREE | |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- 8 rows in set (0.28 sec)
索引信息中的列的信息说明。
Table :表的名称。
Non_unique :如果索引不能包括重复词,则为0。如果可以,则为1。
Key_name :索引的名称。
Seq_in_index :索引中的列序列号,从1开始。
Column_name :列名称。
Collation :列以什么方式存储在索引中。在MySQLSHOW INDEX语法中,有值’A’(升序)或NULL(无分类)。
Cardinality :索引中唯一值的数目的估计值。通过运行ANALYZE TABLE或myisamchk -a可以更新。基数根据被存储为整数的统计数据来计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL使用该索引的机会就越大。
Sub_part :如果列只是被部分地编入索引,则为被编入索引的字符的数目。如果整列被编入索引,则为NULL。
Packed :指示关键字如何被压缩。如果没有被压缩,则为NULL。
Null :如果列含有NULL,则含有YES。如果没有,则为空。
Index_type :存储索引数据结构方法(BTREE, FULLTEXT, HASH, RTREE)
二,删除一半数据
- mysql> delete from ad_visit_history where id>598000; //删除一半数据
- Query OK, 589096 rows affected (4 min 28.06 sec)
- [root@BlackGhost test1]# ls |grep visit |xargs -i du {} //相对应的MYD,MYI文件大小没有变化
- 382020 ad_visit_history.MYD
- 127116 ad_visit_history.MYI
- 12 ad_visit_history.frm
按常规思想来说,如果在数据库中删除了一半数据后,相对应的.MYD,.MYI文件也应当变为之前的一半。但是删除一半数据后,.MYD.MYI尽然连1KB都没有减少 ,这是多么的可怕啊。
我们在来看一看,索引信息
- mysql> show index from ad_visit_history;
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | ad_visit_history | 0 | PRIMARY | 1 | id | A | 598000 | NULL | NULL | | BTREE | |
- | ad_visit_history | 1 | ad_code | 1 | ad_code | A | 23 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | unique_id | 1 | unique_id | A | 598000 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ad_code_ind | 1 | ad_code | A | 23 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | from_page_url_ind | 1 | from_page_url | A | 15333 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ip_ind | 1 | ip | A | 299000 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | port_ind | 1 | port | A | 33222 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | session_id_ind | 1 | session_id | A | 598000 | NULL | NULL | YES | BTREE | |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- 8 rows in set (0.00 sec)
对比一下,这次索引查询和上次索引查询,里面的数据信息基本上是上次一次的一本,这点还是合乎常理。
三,用optimize table来优化一下
- mysql> optimize table ad_visit_history; //删除数据后的优化
- +------------------------+----------+----------+----------+
- | Table | Op | Msg_type | Msg_text |
- +------------------------+----------+----------+----------+
- | test1.ad_visit_history | optimize | status | OK |
- +------------------------+----------+----------+----------+
- 1 row in set (1 min 21.05 sec)
1,查看一下.MYD,.MYI文件的大小
- [root@BlackGhost test1]# ls |grep visit |xargs -i du {}
- 182080 ad_visit_history.MYD //数据文件差不多为优化前的一半
- 66024 ad_visit_history.MYI //索引文件也一样,差不多是优化前的一半
- 12 ad_visit_history.frm
2,查看一下索引信息
- mysql> show index from ad_visit_history;
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- | ad_visit_history | 0 | PRIMARY | 1 | id | A | 598000 | NULL | NULL | | BTREE | |
- | ad_visit_history | 1 | ad_code | 1 | ad_code | A | 42 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | unique_id | 1 | unique_id | A | 598000 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ad_code_ind | 1 | ad_code | A | 42 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | from_page_url_ind | 1 | from_page_url | A | 24916 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | ip_ind | 1 | ip | A | 598000 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | port_ind | 1 | port | A | 59800 | NULL | NULL | YES | BTREE | |
- | ad_visit_history | 1 | session_id_ind | 1 | session_id | A | 598000 | NULL | NULL | YES | BTREE | |
- +------------------+------------+-------------------+--------------+---------------+-----------+-------------+----------+--------+------+------------+---------+
- 8 rows in set (0.00 sec)
从以上数据我们可以得出,ad_code,ad_code_ind,from_page_url_ind等索引机会差不多都提高了85%,这样效率提高了好多。
四,小结
结合mysql官方网站的信息,个人是这样理解的。当你删除数据 时,mysql并不会回收,被已删除数据的占据的存储空间,以及索引位。而是空在那里,而是等待新的数据来弥补这个空缺,这样就有一个缺少,如果一时半 会,没有数据来填补这个空缺,那这样就太浪费资源了。所以对于写比较频烦的表,要定期进行optimize,一个月一次,看实际情况而定了。
举个例子来说吧。有100个php程序员辞职了,但是呢只是人走了,php的职位还在那里,这些职位不会撤销,要等新的php程序来填补这些空位。招一个好的程序员,比较难。我想大部分时间会空在那里。哈哈。
五,手册中关于OPTIMIZE的一些用法和描述
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...
如果您已经删除了表的一大部分,或者如果您已经对含有可变长度行的表(含有VARCHAR, BLOB或TEXT列的表)进行了很多更改,则应使用OPTIMIZE TABLE。被删除的记录被保持在链接清单中,后续的INSERT操作会重新使用旧的记录位置。您可以使用OPTIMIZE TABLE来重新利用未使用的空间,并整理数据文件的碎片。在多数的设置中,您根本不需要运行OPTIMIZE TABLE。即使您对可变长度的行进行了大量的更新,您也不需要经常运行,每周一次或每月一次即可,只对特定的表运行。
OPTIMIZE TABLE只对MyISAM, BDB和InnoDB表起作用。注意,在OPTIMIZE TABLE运行过程中,MySQL会锁定表。