Flink实例(129):状态管理(十八)Table API 和 SQL 模块状态管理(三) Flink SQL空闲状态保留时间(idle state retention time)实现原理

来源:https://blog.csdn.net/nazeniwaresakini/article/details/112306222

为什么要设置

  如果我们在数据流上进行分组查询,分组处理产生的结果(不仅仅是聚合结果)会作为中间状态存储下来。随着分组key的不断增加,状态自然也会不断膨胀。但是这些状态数据基本都有时效性,不必永久保留。例如,使用Top-N语法进行去重,重复数据的出现一般都位于特定区间内(例如一小时或一天内),过了这段时间之后,对应的状态就不再需要了。Flink SQL提供的idle state retention time特性可以保证当状态中某个key对应的数据未更新的时间达到阈值时,该条状态被自动清理。设置方法是:

stenv.getConfig().setIdleStateRetentionTime(Time.hours(24), Time.hours(36))

注意setIdleStateRetentionTime()方法需要传入两个参数:状态的最小保留时间minRetentionTime和最大保留时间maxRetentionTime(根据实际业务决定),且两者至少相差5分钟。为什么会有这种限制呢?看一下源码就知道了。

如何实现的

idle state retention time特性在底层以o.a.f.table.runtime.functions.CleanupState接口来表示,代码如下。

public interface CleanupState {
    default void registerProcessingCleanupTimer(
            ValueState<Long> cleanupTimeState,
            long currentTime,
            long minRetentionTime,
            long maxRetentionTime,
            TimerService timerService)
            throws Exception {
        // last registered timer
        Long curCleanupTime = cleanupTimeState.value();
 
        // check if a cleanup timer is registered and
        // that the current cleanup timer won‘t delete state we need to keep
        if (curCleanupTime == null || (currentTime + minRetentionTime) > curCleanupTime) {
            // we need to register a new (later) timer
            long cleanupTime = currentTime + maxRetentionTime;
            // register timer and remember clean-up time
            timerService.registerProcessingTimeTimer(cleanupTime);
            // delete expired timer
            if (curCleanupTime != null) {
                timerService.deleteProcessingTimeTimer(curCleanupTime);
            }
            cleanupTimeState.update(cleanupTime);
        }
    }
}

由上可知,每个key对应的最近状态清理时间会单独维护在ValueState中。如果满足以下两条件之一:

ValueState为空(即这个key是第一次出现)
或者当前时间加上minRetentionTime已经超过了最近清理的时间
就用当前时间加上maxRetentionTime注册新的Timer,并将其时间戳存入ValueState,用于触发下一次清理。如果有已经过期了的Timer,则一并删除之。可见,如果minRetentionTime和maxRetentionTime的间隔设置太小,就会比较频繁地产生Timer与更新ValueState,维护Timer的成本会变大(参见之前笔者写的Timer原理文章),所以一般建议设置间隔比较长的清理区间。

CleanupState接口的继承关系如下图所示。

Flink实例(129):状态管理(十八)Table API 和 SQL 模块状态管理(三)    Flink SQL空闲状态保留时间(idle state retention time)实现原理

 

 

 可见支持空闲状态清理的Function很多,但基类都是KeyedProcessFunctionWithCleanupState抽象类。它的源码如下。

public abstract class KeyedProcessFunctionWithCleanupState<K, IN, OUT>
        extends KeyedProcessFunction<K, IN, OUT> implements CleanupState {
    private static final long serialVersionUID = 2084560869233898457L;
 
    private final long minRetentionTime;
    private final long maxRetentionTime;
    protected final boolean stateCleaningEnabled;
 
    // holds the latest registered cleanup timer
    private ValueState<Long> cleanupTimeState;
 
    public KeyedProcessFunctionWithCleanupState(long minRetentionTime, long maxRetentionTime) {
        this.minRetentionTime = minRetentionTime;
        this.maxRetentionTime = maxRetentionTime;
        this.stateCleaningEnabled = minRetentionTime > 1;
    }
 
    protected void initCleanupTimeState(String stateName) {
        if (stateCleaningEnabled) {
            ValueStateDescriptor<Long> inputCntDescriptor =
                    new ValueStateDescriptor<>(stateName, Types.LONG);
            cleanupTimeState = getRuntimeContext().getState(inputCntDescriptor);
        }
    }
 
    protected void registerProcessingCleanupTimer(Context ctx, long currentTime) throws Exception {
        if (stateCleaningEnabled) {
            registerProcessingCleanupTimer(
                    cleanupTimeState,
                    currentTime,
                    minRetentionTime,
                    maxRetentionTime,
                    ctx.timerService());
        }
    }
 
    protected boolean isProcessingTimeTimer(OnTimerContext ctx) {
        return ctx.timeDomain() == TimeDomain.PROCESSING_TIME;
    }
 
    protected void cleanupState(State... states) {
        for (State state : states) {
            state.clear();
        }
        this.cleanupTimeState.clear();
    }
 
    protected Boolean needToCleanupState(Long timestamp) throws IOException {
        if (stateCleaningEnabled) {
            Long cleanupTime = cleanupTimeState.value();
            // check that the triggered timer is the last registered processing time timer.
            return timestamp.equals(cleanupTime);
        } else {
            return false;
        }
    }
}

可以发现,空闲状态保留时间目前(1.12版本)仍然只支持processing time语义,并且minRetentionTime只有设为大于0的值才会生效。

KeyedProcessFunctionWithCleanupState只是提供了一些helper方法,具体发挥作用需要到实现类中去找。以计算Top-N的AppendOnlyTopNFunction为例,它的processElement()方法中会对到来的每个元素注册清理Timer:

@Override
public void processElement(RowData input, Context context, Collector<RowData> out) throws Exception {
    long currentTime = context.timerService().currentProcessingTime();
    // register state-cleanup timer
    registerProcessingCleanupTimer(context, currentTime);
    // ......
}

而一旦Timer触发,在onTimer()方法中调用基类的cleanupState()方法来实际清理:

@Override
public void onTimer(
        long timestamp,
        OnTimerContext ctx,
        Collector<RowData> out) throws Exception {
    if (stateCleaningEnabled) {
        // cleanup cache
        kvSortedMap.remove(keyContext.getCurrentKey());
        cleanupState(dataState);
    }
}

空闲状态保留的逻辑并不仅应用在上述Function中。在Table/SQL模块中还有一个内置的触发器StateCleaningCountTrigger,它可以对窗口中的元素进行计数,并按照计数阈值或者空闲状态保留的时间阈值来清理(即FIRE_AND_PURGE)。看官可自行参考对应的源码,不再废话了。
————————————————
版权声明:本文为CSDN博主「LittleMagics」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/nazeniwaresakini/article/details/112306222

 

Flink实例(129):状态管理(十八)Table API 和 SQL 模块状态管理(三) Flink SQL空闲状态保留时间(idle state retention time)实现原理

上一篇:continue与break


下一篇:C++中break/Continue,exit/return的理解