来源:https://blog.csdn.net/nazeniwaresakini/article/details/112306222
为什么要设置
如果我们在数据流上进行分组查询,分组处理产生的结果(不仅仅是聚合结果)会作为中间状态存储下来。随着分组key的不断增加,状态自然也会不断膨胀。但是这些状态数据基本都有时效性,不必永久保留。例如,使用Top-N语法进行去重,重复数据的出现一般都位于特定区间内(例如一小时或一天内),过了这段时间之后,对应的状态就不再需要了。Flink SQL提供的idle state retention time特性可以保证当状态中某个key对应的数据未更新的时间达到阈值时,该条状态被自动清理。设置方法是:
stenv.getConfig().setIdleStateRetentionTime(Time.hours(24), Time.hours(36))
注意setIdleStateRetentionTime()方法需要传入两个参数:状态的最小保留时间minRetentionTime和最大保留时间maxRetentionTime(根据实际业务决定),且两者至少相差5分钟。为什么会有这种限制呢?看一下源码就知道了。
如何实现的
idle state retention time特性在底层以o.a.f.table.runtime.functions.CleanupState接口来表示,代码如下。
public interface CleanupState { default void registerProcessingCleanupTimer( ValueState<Long> cleanupTimeState, long currentTime, long minRetentionTime, long maxRetentionTime, TimerService timerService) throws Exception { // last registered timer Long curCleanupTime = cleanupTimeState.value(); // check if a cleanup timer is registered and // that the current cleanup timer won‘t delete state we need to keep if (curCleanupTime == null || (currentTime + minRetentionTime) > curCleanupTime) { // we need to register a new (later) timer long cleanupTime = currentTime + maxRetentionTime; // register timer and remember clean-up time timerService.registerProcessingTimeTimer(cleanupTime); // delete expired timer if (curCleanupTime != null) { timerService.deleteProcessingTimeTimer(curCleanupTime); } cleanupTimeState.update(cleanupTime); } } }
由上可知,每个key对应的最近状态清理时间会单独维护在ValueState中。如果满足以下两条件之一:
ValueState为空(即这个key是第一次出现)
或者当前时间加上minRetentionTime已经超过了最近清理的时间
就用当前时间加上maxRetentionTime注册新的Timer,并将其时间戳存入ValueState,用于触发下一次清理。如果有已经过期了的Timer,则一并删除之。可见,如果minRetentionTime和maxRetentionTime的间隔设置太小,就会比较频繁地产生Timer与更新ValueState,维护Timer的成本会变大(参见之前笔者写的Timer原理文章),所以一般建议设置间隔比较长的清理区间。
CleanupState接口的继承关系如下图所示。
可见支持空闲状态清理的Function很多,但基类都是KeyedProcessFunctionWithCleanupState抽象类。它的源码如下。
public abstract class KeyedProcessFunctionWithCleanupState<K, IN, OUT> extends KeyedProcessFunction<K, IN, OUT> implements CleanupState { private static final long serialVersionUID = 2084560869233898457L; private final long minRetentionTime; private final long maxRetentionTime; protected final boolean stateCleaningEnabled; // holds the latest registered cleanup timer private ValueState<Long> cleanupTimeState; public KeyedProcessFunctionWithCleanupState(long minRetentionTime, long maxRetentionTime) { this.minRetentionTime = minRetentionTime; this.maxRetentionTime = maxRetentionTime; this.stateCleaningEnabled = minRetentionTime > 1; } protected void initCleanupTimeState(String stateName) { if (stateCleaningEnabled) { ValueStateDescriptor<Long> inputCntDescriptor = new ValueStateDescriptor<>(stateName, Types.LONG); cleanupTimeState = getRuntimeContext().getState(inputCntDescriptor); } } protected void registerProcessingCleanupTimer(Context ctx, long currentTime) throws Exception { if (stateCleaningEnabled) { registerProcessingCleanupTimer( cleanupTimeState, currentTime, minRetentionTime, maxRetentionTime, ctx.timerService()); } } protected boolean isProcessingTimeTimer(OnTimerContext ctx) { return ctx.timeDomain() == TimeDomain.PROCESSING_TIME; } protected void cleanupState(State... states) { for (State state : states) { state.clear(); } this.cleanupTimeState.clear(); } protected Boolean needToCleanupState(Long timestamp) throws IOException { if (stateCleaningEnabled) { Long cleanupTime = cleanupTimeState.value(); // check that the triggered timer is the last registered processing time timer. return timestamp.equals(cleanupTime); } else { return false; } } }
可以发现,空闲状态保留时间目前(1.12版本)仍然只支持processing time语义,并且minRetentionTime只有设为大于0的值才会生效。
KeyedProcessFunctionWithCleanupState只是提供了一些helper方法,具体发挥作用需要到实现类中去找。以计算Top-N的AppendOnlyTopNFunction为例,它的processElement()方法中会对到来的每个元素注册清理Timer:
@Override public void processElement(RowData input, Context context, Collector<RowData> out) throws Exception { long currentTime = context.timerService().currentProcessingTime(); // register state-cleanup timer registerProcessingCleanupTimer(context, currentTime); // ...... }
而一旦Timer触发,在onTimer()方法中调用基类的cleanupState()方法来实际清理:
@Override public void onTimer( long timestamp, OnTimerContext ctx, Collector<RowData> out) throws Exception { if (stateCleaningEnabled) { // cleanup cache kvSortedMap.remove(keyContext.getCurrentKey()); cleanupState(dataState); } }
空闲状态保留的逻辑并不仅应用在上述Function中。在Table/SQL模块中还有一个内置的触发器StateCleaningCountTrigger,它可以对窗口中的元素进行计数,并按照计数阈值或者空闲状态保留的时间阈值来清理(即FIRE_AND_PURGE)。看官可自行参考对应的源码,不再废话了。
————————————————
版权声明:本文为CSDN博主「LittleMagics」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/nazeniwaresakini/article/details/112306222
Flink实例(129):状态管理(十八)Table API 和 SQL 模块状态管理(三) Flink SQL空闲状态保留时间(idle state retention time)实现原理