编号为1~8的8个正方形滑块摆成3行3列(有一个格式留空),如图所示。每次可以把与空格相邻的滑块(有公共边才算相邻).移动到空格中,而它原来的位置就成舍了新的空格。给定葫始高面和目标局面(用0表示空格),你的任务是计算出最少的移动步数。如果无法到达局面,则输出-1。
样例输入:
2 6 4 1 3 7 0 5 8
8 1 5 7 3 6 4 0 2
代码实现:
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class eight_Digital {
static int[] goal = new int[9];//目标状态数组
static int[] fa = new int[1000000];//”父亲“编号数组
static int[] dist = new int[1000000];//距离数组
static int[][] st = new int[1000000][9];//过程状态数组
static int dx[] = {-1,1,0,0};
static int dy[] = {0,0,-1,1};
static Set<Integer> vis = new HashSet<Integer>();//存放没一步结果,防止回到原来已经走过的路。
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//3*3样例
// 2 6 4 1 3 7 0 5 8 初始
// 8 1 5 7 3 6 4 0 2 goal
for (int i = 0; i < 9; i++) {
st[1][i] = sc.nextInt();
}
for (int i = 0; i < 9; i++) {
goal[i] = sc.nextInt();
}
int v=0;
for (int i = 0; i < 9; i++) v=v*10+goal[i];
vis.add(v);//add goal
int ans = bfs();// 分析之后,使用宽度搜索更合适
if(dist[ans]>0) {
System.out.println("最小步数:");
System.out.println(dist[ans]);
System.out.println(fa[ans]);}
else
System.out.println(0);
System.out.format("\33[32;4m移动如下:%n");//%n表示换行
int[][] process = new int[dist[ans]+1][9]; //本来dist[ans]为所需的步数,
//我们第process[0][9]放起始状态,方便构造
print(process,ans);
}
/*
* 输出 结果
*/
private static void print(int[][] process,int ans) {
int i=dist[ans]+1;
while(true) {
process[--i] = st[ans];
if(ans==1)
break;
ans = fa[ans];
}
for (int j = 0; j < process.length; j++) {
System.out.format("\33[32;4m第"+j+"步:%n");
for (int j2 = 0; j2 < 9; j2++) {
System.out.print(process[j][j2]+"\t");
if(j2==2||j2==5)
System.out.println();
}
System.out.println();
}
}
/*
* 返回 最终结果 fornt 堆首 或 0未找到
*/
private static int bfs() {
init_lookup_table();
int front=1,rear=2;
while(front<rear) {
int[] s = st[front];
if(Arrays.equals(s, goal)) {
fa[rear] = front;
return front;}
int z;
for ( z = 0; z < 9; z++)
if(s[z]==0)
break;
int x = z/3,y=z%3;
for (int d = 0; d < 4; d++) {
int newx = x+dx[d];
int newy = y+dy[d];
int newz = newx*3+newy;
if(newx>=0&&newx<3&&newy>=0&&newy<3) {
for (int i = 0; i <9; i++)
st[rear][i] = s[i];
st[rear][newz] =s[z];//每次只有两个位置改变
st[rear][z] = s[newz];
dist[rear] = dist[front]+1;//再栈首的基础上加一
fa[rear] = front;//给任意一个 fornt,都能fornt = fa[fornt],构造过程
if(try_to_insert(rear)==1) rear++;
}//end if
}// end for
front++;
}//end while
return 0;
}
/*
* 初始化
*/
private static void init_lookup_table() {
vis.clear();
for (int i = 0; i < 1000000; i++) {
dist[i] = 0;
}
}
/*
* 尝试插入 如果集合里面已经有了,则不再插入,否者插入
*/
private static int try_to_insert(int rear) {
int v=0;
for (int i = 0; i < 9; i++) v=v*10+st[rear][i];
if(vis.contains(v)) return 0;
vis.add(v);
return 1;
}
}
结果:
… and so on