[wikioi 2845]排序的代价(置换群)

有一列数,要对其进行排序(升序)。排序只能通过交换来实现。每次交换,可以选择这列数中的任意二个,交换他们的位置,并且交换的代价为二个数的和。排序的总代价是排序过程中所有交换代价之和。先要求计算,对于任意给出的数列,要将其排成升序所需的最小代价。

输入数据有两行组成。第一行一个数n,表示这列数共有n个数组成,第二行n个互不相同的整数(都是小于1000的正整数),表示这列数

输入可能包含多组测试数据(少于50组),对于每个输入数据均需要给出对应的输出

对于每个输入数据,输出最小代价。格式为Case t: min

其中t为数据的编号,从1开始,min为这个数据的最小代价

3

3 2 1

4

8 1 2 4

Case 1: 4

Case 2: 17

n<=1000

分析:一般涉及到这种位置交换的都与置换群有联系。

假设这里有一组数3 7 4 1 2 6 5

则排序后应该是1 2 3 4 5 6 7

与原数组比较 3 7 4 1 2 6 5

则这个两个数组就可以表示一个置换群,可以理解成元素的一一映射,“1”——>"3","2"——>"7"以此类推

这里介绍几个概念:

轮换:即映射的循环,如例子中1-3-4-1就是一个循环,用(1,3,4)表示

分解置换群:把置换群分解成若干个轮换

如例子分解出来就是:(1,3,4)(2,7,5)(6)

然后我们分析一下:"1"想去"3"的位置,"3"想去"4“的位置,"4"想去"1"的位置;"2"想去"7"的位置,"7”想去"5“的位置,"5"想去"2”的位置,以此类推……可以发现不同的轮换互不影响,也就是说我们可以分开来单独处理,这同样也暗示我们了这题应该是贪心思路,因为这里局部最优就导致一定全局最优

下面考虑(1,3,4):

我们的最终目标是把(1,3,4)通过若干交换变成(1)(3)(4)(每个元素都找准了自己位置),现在我们需要花费最少的代价交换它们

既然每个元素都想去它后面那个元素所在的元素位置(特殊的,最后一个想去第一个)。很自然而然的想到,拿其中一个数不断跟前面的数换(换到第一位接着换到最后一位),经过n-1次交换后每个元素都回到了自己应该的位置,即分解成了单元素轮换,而既然要它代价最小,肯定就是拿这个轮换中最小的数换。这样正确吗?

这里介绍一个引理:一个元素个数为n的轮换(n元环),分解成单元素轮换至少需要n-1交换

证明:

可以用数学归纳法证明:
 a、一元环,不需要动. 0次。
  b、二元环,直接交换即可.1次。
  c、三元环,第一次交换,总是把环拆成一个二元与一个一元。然后再拆二元环. 1+1=2次.
  d、四元环,第一次交换,有两种情况:拆成两个二环,或拆成一个三元环与一个一元环。
      无论哪种情况. 1+1+1=3. 1+2+0=3.
  e、假设拆k元环以内的环都只需要k-1次可以完成.现在来拆k+1元环。
     显然,无论交换哪两个,总是把k元环拆成了两个环,根据假设,拆这两个环所需的次数
   都是他们的元数-1.两个环的元数合起来为k+1,次数合起来就是k+1-2.再加上前面拆成
   两个环需要一次,就是k+1-2+1=k次。
 故命题得证。

恩到了这里我们发现我们的做法很好,保证了交换次数最少,同时代价也是最小的,但是这样真的可以吗!?

比如说,对100,101,102,103,104,99.如果按照上述方法来排序。代价为100+101+102+103+104+99*5次.实际上,为了避免每次移动99这样一个大数,如果外界还有一个很小的数,如1.我们可以第一步先把1跟99交换,然后再用1代替99完成那n-1次交换。完成后,再把1跟99换回去。这样代价为100+101+102+103+104+1*5 +(1+99)*2.显然代价要小

晕,这不禁让我们对这个做法有点怀疑,还有反例吗!?

不过仔细想想我们的思路是没有错的,反例存在的原因并不是各个轮换之间有影响而造成了,如果这样那我们的做法就肯定是错误的了。我们发现上述反例的最优解除了最开始和最末的交换不同之外,其他做法是一样的。于是我们意识到了问题所在,得不到最优解的原因是“交换的数字不够小”,有数字交换同一个轮换中的元素可以得到更小花费!!!!!!这个比轮换中最小的数还小的数在哪里!!!!!!!!!!!!!??????????是整个置换群(即整个数组)中的最小的!!

于是我们想到了有两种可能:

  1)取这个轮换中的最小数作上述操作

  2)将整个置换群中的最小数m和这个轮换中的最小数m‘交换;将m作上述操作;将m和m‘换回来(因为满足m<=m‘所以对结果正确性无影响)

 

算法总结:

①暴力分解置换群成若干轮换

②对于每个轮换单独处理:

  1、求出这个轮换中最小值m‘和这个轮换中各个元素的总和s以及个数n,则上述第一种方案的代价为:Cost1=m‘*(n-1)+s-m‘

  2、求出整个数组中最小值m,则上述第二种方案的代价为:Cost2=m+m‘+m*(n-1)+s-m+m+m‘

  3、去Cost1和Cost2中的最小值作为此轮换处理结果,加入到最后结果中

注意:再回归到这个题目,注意到数字不是连续的,所以要离散处理

[wikioi 2845]排序的代价(置换群)

上一篇:photoshop鼠绘逼真的红色小提琴


下一篇:Working with Other Node Types