目录
5、用 synchronized 解决 count+=1 问题
一、解决原子性问题——互斥
一个或者多个操作在 CPU 执行的过程中不被中断的特性,称为“原子性”。
1、那原子性问题到底该如何解决呢?
原子性问题的源头是线程切换,如果能够禁用线程切换那不就能解决这个问题了吗?而操作系统做线程切换是依赖 CPU 中断的,所以禁止 CPU 发生中断就能够禁止线程切换。
在早期单核 CPU 时代,这个方案的确是可行的,而且也有很多应用案例,但是并不适合多核场景。这里我们以 32 位 CPU 上执行 long 型变量的写操作为例来说明这个问题,long 型变量是 64 位,在 32 位 CPU 上执行写操作会被拆分成两次写操作(写高 32 位和写低 32 位,如下图所示)。
在单核 CPU 场景下,同一时刻只有一个线程执行,禁止 CPU 中断,意味着操作系统不会重新调度线程,也就是禁止了线程切换,获得 CPU 使用权的线程就可以不间断地执行,所以两次写操作一定是:要么都被执行,要么都没有被执行,具有原子性。
但是在多核场景下,同一时刻,有可能有两个线程同时在执行,一个线程执行在 CPU-1 上,一个线程执行在 CPU-2 上,此时禁止 CPU 中断,只能保证 CPU 上的线程连续执行,并不能保证同一时刻只有一个线程执行,如果这两个线程同时写 long 型变量高 32 位的话,那就有可能出现明明已经把变量成功写入内存,重新读出来却不是自己写入的现象。
“同一时刻只有一个线程执行”这个条件非常重要,我们称之为互斥。如果我们能够保证对共享变量的修改是互斥的,那么,无论是单核 CPU 还是多核 CPU,就都能保证原子性了。
2、简易锁模型
我们把一段需要互斥执行的代码称为临界区。线程在进入临界区之前,首先尝试加锁 lock(),如果成功,则进入临界区,此时我们称这个线程持有锁;否则呢就等待,直到持有锁的线程解锁;持有锁的线程执行完临界区的代码后,执行解锁 unlock()。
这个过程非常像办公室里高峰期抢占坑位,每个人都是进坑锁门(加锁),出坑开门(解锁),如厕这个事就是临界区。这样理解本身没有问题,但却很容易让我们忽视两个非常非常重要的点:我们锁的是什么?我们保护的又是什么?
3、改进后的锁模型
首先,我们要把临界区要保护的资源标注出来,如图中临界区里增加了一个元素:受保护的资源 R;其次,我们要保护资源 R 就得为它创建一把锁 LR;最后,针对这把锁 LR,我们还需在进出临界区时添上加锁操作和解锁操作。另外,在锁 LR 和受保护资源之间,我特地用一条线做了关联,这个关联关系非常重要。很多并发 Bug 的出现都是因为把它忽略了,然后就出现了类似锁自家门来保护他家资产的事情,这样的 Bug 非常不好诊断,因为潜意识里我们认为已经正确加锁了。
4、Java 语言提供的锁技术:synchronized
锁是一种通用的技术方案,Java 语言提供的 synchronized 关键字,就是锁的一种实现。synchronized 关键字可以用来修饰方法,也可以用来修饰代码块,它的使用示例基本上都是下面这个样子:
public class X {
// 修饰非静态方法
synchronized void foo() {
// 临界区
}
// 修饰静态方法
synchronized static void bar() {
// 临界区
}
// 修饰代码块
Object obj = new Object();
void baz() {
synchronized (obj) {
// 临界区
}
}
}
看完之后你可能会觉得有点奇怪,这个和我们上面提到的模型有点对不上号啊,加锁 lock() 和解锁 unlock() 在哪里呢?其实这两个操作都是有的,只是这两个操作是被 Java 默默加上的,Java 编译器会在 synchronized 修饰的方法或代码块前后自动加上加锁 lock() 和解锁 unlock(),这样做的好处就是加锁 lock() 和解锁 unlock() 一定是成对出现的,毕竟忘记解锁 unlock() 可是个致命的 Bug(意味着其他线程只能死等下去了)。
那 synchronized 里的加锁 lock() 和解锁 unlock() 锁定的对象在哪里呢?上面的代码我们看到只有修饰代码块的时候,锁定了一个 obj 对象,那修饰方法的时候锁定的是什么呢?这个也是 Java 的一条隐式规则:
- 当修饰静态方法的时候,锁定的是当前类的 Class 对象,在上面的例子中就是 Class X;
- 当修饰非静态方法的时候,锁定的是当前实例对象 this。
对于上面的例子,synchronized 修饰静态方法相当于:
class X {
// 修饰静态方法
synchronized(X.class) static void bar() {
// 临界区
}
}
修饰非静态方法,相当于:
class X {
// 修饰非静态方法
synchronized(this) void foo() {
// 临界区
}
}
5、用 synchronized 解决 count+=1 问题
相信你一定记得我们前面文章中提到过的 count+=1 存在的并发问题,现在我们可以尝试用 synchronized 来小试牛刀一把,代码如下所示。SafeCalc 这个类有两个方法:一个是 get() 方法,用来获得 value 的值;另一个是 addOne() 方法,用来给 value 加 1,并且 addOne() 方法我们用 synchronized 修饰。那么我们使用的这两个方法有没有并发问题呢?
class SafeCalc {
long value = 0L;
long get() { // 该方法没法保证可见性
return value;
}
synchronized void addOne() {
value += 1;
}
}
们先来看看 addOne() 方法,首先可以肯定,被 synchronized 修饰后,无论是单核 CPU 还是多核 CPU,只有一个线程能够执行 addOne() 方法,所以一定能保证原子操作,那是否有可见性问题呢?要回答这问题,就要提到管程中锁的规则。
对一个锁的解锁 Happens-Before 于后续对这个锁的加锁。
管程,就是我们这里的 synchronized,我们知道 synchronized 修饰的临界区是互斥的,也就是说同一时刻只有一个线程执行临界区的代码;而所谓“对一个锁解锁 Happens-Before 后续对这个锁的加锁”,指的是前一个线程的解锁操作对后一个线程的加锁操作可见,综合 Happens-Before 的传递性原则,我们就能得出前一个线程在临界区修改的共享变量(该操作在解锁之前),对后续进入临界区(该操作在加锁之后)的线程是可见的。
按照这个规则,如果多个线程同时执行 addOne() 方法,可见性是可以保证的,也就说如果有 1000 个线程执行 addOne() 方法,最终结果一定是 value 的值增加了 1000。
但也许,你一不小心就忽视了 get() 方法。执行 addOne() 方法后,value 的值对 get() 方法是可见的吗?这个可见性是没法保证的。管程中锁的规则,是只保证后续对这个锁的加锁的可见性,而 get() 方法并没有加锁操作,所以可见性没法保证。那如何解决呢?很简单,就是 get() 方法也 synchronized 一下,完整的代码如下所示。
class SafeCalc {
long value = 0L;
synchronized long get() {
return value;
}
synchronized void addOne() {
value += 1;
}
}
上面的代码转换为我们提到的锁模型,就是下面图示这个样子。get() 方法和 addOne() 方法都需要访问 value 这个受保护的资源,这个资源用 this 这把锁来保护。线程要进入临界区 get() 和 addOne(),必须先获得 this 这把锁,这样 get() 和 addOne() 也是互斥的。
6、锁和受保护资源的关系
我们前面提到,受保护资源和锁之间的关联关系非常重要,他们的关系是怎样的呢?一个合理的关系是:受保护资源和锁之间的关联关系是 N:1 的关系。
上面那个例子我稍作改动,把 value 改成静态变量,把 addOne() 方法改成静态方法,此时 get() 方法和 addOne() 方法是否存在并发问题呢?
public class SafeCalc {
static long value = 0L;
synchronized long get() {
return value;
}
synchronized static void addOne() {
value += 1;
}
}
如果你仔细观察,就会发现改动后的代码是用两个锁保护一个资源。这个受保护的资源就是静态变量 value,两个锁分别是 this 和 SafeCalc.class。我们可以用下面这幅图来形象描述这个关系。由于临界区 get() 和 addOne() 是用两个锁保护的,因此这两个临界区没有互斥关系,临界区 addOne() 对 value 的修改对临界区 get() 也没有可见性保证,这就导致并发问题了。
总结
互斥锁,在并发领域的知名度极高,只要有了并发问题,大家首先容易想到的就是加锁,因为大家都知道,加锁能够保证执行临界区代码的互斥性。这样理解虽然正确,但是却不能够指导你真正用好互斥锁。临界区的代码是操作受保护资源的路径,类似于球场的入口,入口一定要检票,也就是要加锁,但不是随便一把锁都能有效。所以必须深入分析锁定的对象和受保护资源的关系,综合考虑受保护资源的访问路径,多方面考量才能用好互斥锁。
synchronized 是 Java 在语言层面提供的互斥原语,其实 Java 里面还有很多其他类型的锁,但作为互斥锁,原理都是相通的:锁,一定有一个要锁定的对象,至于这个锁定的对象要保护的资源以及在哪里加锁 / 解锁,就属于设计层面的事情了。
二、如何用一把锁保护多个资源?
在上文中,我们提到受保护资源和锁之间合理的关联关系应该是 N:1 的关系,也就是说可以用一把锁来保护多个资源,但是不能用多把锁来保护一个资源。
1、保护没有关联关系的多个资源
在现实世界里,球场的座位和电影院的座位就是没有关联关系的,这种场景非常容易解决,那就是球赛有球赛的门票,电影院有电影院的门票,各自管理各自的。
同样这对应到编程领域,也很容易解决。例如,银行业务中有针对账户余额(余额是一种资源)的取款操作,也有针对账户密码(密码也是一种资源)的更改操作,我们可以为账户余额和账户密码分配不同的锁来解决并发问题。
相关的示例代码如下,账户类 Account 有两个成员变量,分别是账户余额 balance 和账户密码 password。取款 withdraw() 和查看余额 getBalance() 操作会访问账户余额 balance,我们创建一个 final 对象 balLock 作为锁(类比球赛门票);而更改密码 updatePassword() 和查看密码 getPassword() 操作会修改账户密码 password,我们创建一个 final 对象 pwLock 作为锁(类比电影票)。不同的资源用不同的锁保护。
class Account {
// 锁:保护账户余额
private final Object balLock = new Object();
// 账户余额
private Integer balance;
// 锁:保护账户密码
private final Object pwLock = new Object();
// 账户密码
private String password;
// 取款
void withdraw(Integer amt) {
synchronized (balLock) {
if (this.balance > amt) {
this.balance -= amt;
}
}
}
// 查看余额
Integer getBalance() {
synchronized (balLock) {
return balance;
}
}
// 更改密码
void updatePassword(String pw) {
synchronized (pwLock) {
this.password = pw;
}
}
// 查看密码
String getPassword() {
synchronized (pwLock) {
return password;
}
}
}
当然,我们也可以用一把互斥锁来保护多个资源,例如我们可以用 this 这一把锁来管理账户类里所有的资源:账户余额和用户密码。具体实现很简单,示例程序中所有的方法都增加同步关键字 synchronized 就可以了。
但是用一把锁有个问题,就是性能太差,会导致取款、查看余额、修改密码、查看密码这四个操作都是串行的。而我们用两把锁,取款和修改密码是可以并行的。用不同的锁对受保护资源进行精细化管理,能够提升性能。这种锁还有个名字,叫细粒度锁。
2、保护有关联关系的多个资源
如果多个资源是有关联关系的,那这个问题就有点复杂了。例如银行业务里面的转账操作,账户 A 减少 100 元,账户 B 增加 100 元。这两个账户就是有关联关系的。那对于像转账这种有关联关系的操作,我们应该怎么去解决呢?先把这个问题代码化。我们声明了个账户类:Account,该类有一个成员变量余额:balance,还有一个用于转账的方法:transfer(),然后怎么保证转账操作 transfer() 没有并发问题呢?
class Account {
private int balance;
// 转账
void transfer(
Account target, int amt){
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
相信你的直觉会告诉你这样的解决方案:用户 synchronized 关键字修饰一下 transfer() 方法就可以了,于是你很快就完成了相关的代码,如下所示。
class Account {
private int balance;
// 转账
synchronized void transfer(
Account target, int amt){
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
在这段代码中,临界区内有两个资源,分别是转出账户的余额 this.balance 和转入账户的余额 target.balance,并且用的是一把锁 this,符合我们前面提到的,多个资源可以用一把锁来保护,这看上去完全正确呀。真的是这样吗?可惜,这个方案仅仅是看似正确,为什么呢?
问题就出在 this 这把锁上,this 这把锁可以保护自己的余额 this.balance,却保护不了别人的余额 target.balance,就像你不能用自家的锁来保护别人家的资产,也不能用自己的票来保护别人的座位一样。
3、使用锁的正确姿势
如果用同一把锁来保护多个资源,也就是现实世界的“包场”,那在编程领域应该怎么“包场”呢?很简单,只要我们的锁能覆盖所有受保护资源就可以了。在上面的例子中,this 是对象级别的锁,所以 A 对象和 B 对象都有自己的锁,如何让 A 对象和 B 对象共享一把锁呢?
稍微开动脑筋,你会发现其实方案还挺多的,比如可以让所有对象都持有一个唯一性的对象,这个对象在创建 Account 时传入。方案有了,完成代码就简单了。示例代码如下,我们把 Account 默认构造函数变为 private,同时增加一个带 Object lock 参数的构造函数,创建 Account 对象时,传入相同的 lock,这样所有的 Account 对象都会共享这个 lock 了。
class Account {
private Object lock;
private int balance;
private Account();
// 创建Account时传入同一个lock对象
public Account(Object lock) {
this.lock = lock;
}
// 转账
void transfer(Account target, int amt){
// 此处检查所有对象共享的锁
synchronized(lock) {
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
}
这个办法确实能解决问题,但是有点小瑕疵,它要求在创建 Account 对象的时候必须传入同一个对象,如果创建 Account 对象时,传入的 lock 不是同一个对象,那可就惨了,会出现锁自家门来保护他家资产的荒唐事。在真实的项目场景中,创建 Account 对象的代码很可能分散在多个工程中,传入共享的 lock 真的很难。
所以,上面的方案缺乏实践的可行性,我们需要更好的方案。还真有,就是用 Account.class 作为共享的锁。Account.class 是所有 Account 对象共享的,而且这个对象是 Java 虚拟机在加载 Account 类的时候创建的,所以我们不用担心它的唯一性。使用 Account.class 作为共享的锁,我们就无需在创建 Account 对象时传入了,代码更简单。
class Account {
private int balance;
// 转账
void transfer(Account target, int amt){
synchronized(Account.class) {
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
}
下面这幅图很直观地展示了我们是如何使用共享的锁 Account.class 来保护不同对象的临界区的。
总结
相信你看完这篇文章后,对如何保护多个资源已经很有心得了,关键是要分析多个资源之间的关系。如果资源之间没有关系,很好处理,每个资源一把锁就可以了。如果资源之间有关联关系,就要选择一个粒度更大的锁,这个锁应该能够覆盖所有相关的资源。除此之外,还要梳理出有哪些访问路径,所有的访问路径都要设置合适的锁,这个过程可以类比一下门票管理。
我们再引申一下上面提到的关联关系,关联关系如果用更具体、更专业的语言来描述的话,其实是一种“原子性”特征,在前面的文章中,我们提到的原子性,主要是面向 CPU 指令的,转账操作的原子性则是属于是面向高级语言的,不过它们本质上是一样的。
“原子性”的本质是什么?其实不是不可分割,不可分割只是外在表现,其本质是多个资源间有一致性的要求,操作的中间状态对外不可见。例如,在 32 位的机器上写 long 型变量有中间状态(只写了 64 位中的 32 位),在银行转账的操作中也有中间状态(账户 A 减少了 100,账户 B 还没来得及发生变化)。所以解决原子性问题,是要保证中间状态对外不可见。
最后:不能用可变对象做锁