编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 true ;不是,则返回 false 。
示例 1:
输入:19 输出:true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1
示例 2:
输入:n = 2 输出:false
方法一:双指针
思路:若是快慢指针相交表示该数以循环,则无法快乐!
class Solution { public boolean isHappy(int n) { int fast = n; int slow = n; while(true){ fast = sqrt(sqrt(fast)); slow = sqrt(slow); if(fast == 1)return true; if(fast == slow)break; } return false; } public int sqrt(int n){ int temp = 0; temp += (n % 10)*(n % 10); while(n != 0){ n = n / 10; temp += (n % 10)*(n % 10); } return temp; } }
方法二:哈希表 class Solution { private int getNext(int n) { int totalSum = 0; while (n > 0) { int d = n % 10; n = n / 10; totalSum += d * d; } return totalSum; } public boolean isHappy(int n) { Set<Integer> seen = new HashSet<>(); while (n != 1 && !seen.contains(n)) { seen.add(n); n = getNext(n); } return n == 1; } }
空间复杂度比双指针高
方法三:数学 class Solution { private static Set<Integer> cycleMembers = new HashSet<>(Arrays.asList(4, 16, 37, 58, 89, 145, 42, 20)); public int getNext(int n) { int totalSum = 0; while (n > 0) { int d = n % 10; n = n / 10; totalSum += d * d; } return totalSum; } public boolean isHappy(int n) { while (n != 1 && !cycleMembers.contains(n)) { n = getNext(n); } return n == 1; } }
知识点:
无
总结:
若是有无限循环的题目或许可以使用双指针。