leetcode29. 两数相除(快速幂 位运算)

链接:https://leetcode-cn.com/problems/divide-two-integers/

题目

给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

返回被除数 dividend 除以除数 divisor 得到的商。

整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2

用例

示例 1:

输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:

输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2

提示:

被除数和除数均为 32 位有符号整数。
除数不为 0。
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−2^31,  2^31 − 1]。本题中,如果除法结果溢出,则返回 2^31 − 1。

思路

判断边界 INT_MIN和INT_MAX情况
然后对待除数翻倍递归相加

  class Solution {
public:
    int divide(int dividend, int divisor) {
        if(dividend == 0) return 0;
        if(divisor == 1) return dividend;
        if(divisor == -1){
            if(dividend>INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦
            return INT_MAX;// 是最小的那个,那就返回最大的整数啦
        }
        long a = dividend;
        long b = divisor;
        int sign = 1; 
        if((a>0&&b<0) || (a<0&&b>0)){
            sign = -1;
        }
        a = a>0?a:-a;
        b = b>0?b:-b;
        long res = div(a,b);
        if(sign>0)return res>INT_MAX?INT_MAX:res;
        return -res;
    }
    int div(long a, long b){  // 似乎精髓和难点就在于下面这几句
        if(a<b) return 0;
        long count = 1;
        long tb = b; // 在后面的代码中不更新b
        while((tb+tb)<=a){
            count = count + count; // 最小解翻倍
            tb = tb+tb; // 当前测试的值也翻倍
        }
        return count + div(a-tb,b);
    }
};

官方题解类二分查找

class Solution {
public:
    int divide(int dividend, int divisor) {
        // 考虑被除数为最小值的情况
        if (dividend == INT_MIN) {
            if (divisor == 1) {
                return INT_MIN;
            }
            if (divisor == -1) {
                return INT_MAX;
            }
        }
        // 考虑除数为最小值的情况
        if (divisor == INT_MIN) {
            return dividend == INT_MIN ? 1 : 0;
        }
        // 考虑被除数为 0 的情况
        if (dividend == 0) {
            return 0;
        }
        
        // 一般情况,使用二分查找
        // 将所有的正数取相反数,这样就只需要考虑一种情况
        bool rev = false;
        if (dividend > 0) {
            dividend = -dividend;
            rev = !rev;
        }
        if (divisor > 0) {
            divisor = -divisor;
            rev = !rev;
        }

        // 快速乘
        auto quickAdd = [](int y, int z, int x) {
            // x 和 y 是负数,z 是正数
            // 需要判断 z * y >= x 是否成立
            int result = 0, add = y;
            while (z) {
                if (z & 1) {
                    // 需要保证 result + add >= x
                    if (result < x - add) {
                        return false;
                    }
                    result += add;
                }
                if (z != 1) {
                    // 需要保证 add + add >= x
                    if (add < x - add) {
                        return false;
                    }
                    add += add;
                }
                // 不能使用除法
                z >>= 1;
            }
            return true;
        };
        
        int left = 1, right = INT_MAX, ans = 0;
        while (left <= right) {
            // 注意溢出,并且不能使用除法
            int mid = left + ((right - left) >> 1);
            bool check = quickAdd(divisor, mid, dividend);
            if (check) {
                ans = mid;
                // 注意溢出
                if (mid == INT_MAX) {
                    break;
                }
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }

        return rev ? -ans : ans;
    }
};

上一篇:21-10-12 两数相除


下一篇:九日集训01