机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记

关注微信公共号:小程在线

机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记

机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记

关注CSDN博客:程志伟的博客


from __future__ import division, print_function, unicode_literals

# Common imports
import numpy as np
import os
import tensorflow as tf

# to make this notebook's output stable across runs
def reset_graph(seed=42):
    tf.reset_default_graph()
    tf.set_random_seed(seed)
    np.random.seed(seed)

# To plot pretty figures
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "tensorflow"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)


import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron

iris = load_iris()
X = iris.data[:, (2, 3)]  # petal length, petal width
y = (iris.target == 0).astype(np.int)

per_clf = Perceptron(max_iter=100, tol=-np.infty, random_state=42)
per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]])
y_pred


a = -per_clf.coef_[0][0] / per_clf.coef_[0][1]
b = -per_clf.intercept_ / per_clf.coef_[0][1]

axes = [0, 5, 0, 2]

x0, x1 = np.meshgrid(
        np.linspace(axes[0], axes[1], 500).reshape(-1, 1),
        np.linspace(axes[2], axes[3], 200).reshape(-1, 1),
    )
X_new = np.c_[x0.ravel(), x1.ravel()]
y_predict = per_clf.predict(X_new)
zz = y_predict.reshape(x0.shape)

plt.figure(figsize=(10, 4))
plt.plot(X[y==0, 0], X[y==0, 1], "bs", label="Not Iris-Setosa")
plt.plot(X[y==1, 0], X[y==1, 1], "yo", label="Iris-Setosa")

plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], "k-", linewidth=3)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#9898ff', '#fafab0'])

plt.contourf(x0, x1, zz, cmap=custom_cmap)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="lower right", fontsize=14)
plt.axis(axes)

save_fig("perceptron_iris_plot")
plt.show()

机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记

 

####激活函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def relu(z):
    return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
    return (f(z + eps) - f(z - eps))/(2 * eps)


z = np.linspace(-5, 5, 200)

plt.figure(figsize=(11,4))

plt.subplot(121)
plt.plot(z, np.sign(z), "r-", linewidth=1, label="Step")
plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=2, label="Tanh")
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.title("Activation functions", fontsize=14)
plt.axis([-5, 5, -1.2, 1.2])

plt.subplot(122)
plt.plot(z, derivative(np.sign, z), "r-", linewidth=1, label="Step")
plt.plot(0, 0, "ro", markersize=5)
plt.plot(0, 0, "rx", markersize=10)
plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=2, label="Tanh")
plt.plot(z, derivative(relu, z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
#plt.legend(loc="center right", fontsize=14)
plt.title("Derivatives", fontsize=14)
plt.axis([-5, 5, -0.2, 1.2])

save_fig("activation_functions_plot")
plt.show()

机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记

 

def heaviside(z):
    return (z >= 0).astype(z.dtype)

def mlp_xor(x1, x2, activation=heaviside):
    return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)


x1s = np.linspace(-0.2, 1.2, 100)
x2s = np.linspace(-0.2, 1.2, 100)
x1, x2 = np.meshgrid(x1s, x2s)

z1 = mlp_xor(x1, x2, activation=heaviside)
z2 = mlp_xor(x1, x2, activation=sigmoid)

plt.figure(figsize=(10,4))

plt.subplot(121)
plt.contourf(x1, x2, z1)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.title("Activation function: heaviside", fontsize=14)
plt.grid(True)

plt.subplot(122)
plt.contourf(x1, x2, z2)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.title("Activation function: sigmoid", fontsize=14)
plt.grid(True)

机器学习实战(基于scikit-learn和TensorFlow)-第十章人工神经网络笔记


#################    用TensorFlow的高级API来训练MLP    ######################
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
X_train = X_train.astype(np.float32).reshape(-1, 28*28) / 255.0
X_test = X_test.astype(np.float32).reshape(-1, 28*28) / 255.0
y_train = y_train.astype(np.int32)
y_test = y_test.astype(np.int32)
X_valid, X_train = X_train[:5000], X_train[5000:]
y_valid, y_train = y_train[:5000], y_train[5000:]

 

import tensorflow.compat.v1 as tf
feature_cols = [tf.feature_column.numeric_column("X", shape=[28 * 28])]
dnn_clf = tf.estimator.DNNClassifier(hidden_units=[300,100], n_classes=10,
                                     feature_columns=feature_cols)

input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"X": X_train}, y=y_train, num_epochs=40, batch_size=50, shuffle=True)
dnn_clf.train(input_fn=input_fn)


test_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"X": X_test}, y=y_test, shuffle=False)
eval_results = dnn_clf.evaluate(input_fn=test_input_fn)


eval_results


y_pred_iter = dnn_clf.predict(input_fn=test_input_fn)
y_pred = list(y_pred_iter)
y_pred[0]


##################    使用纯TensorFlow训练DNN   #############
n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10

tf.compat.v1.disable_eager_execution()
reset_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int32, shape=(None), name="y")


def neuron_layer(X, n_neurons, name, activation=None):
    with tf.name_scope(name):
        n_inputs = int(X.get_shape()[1])
        stddev = 2 / np.sqrt(n_inputs)
        init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)
        W = tf.Variable(init, name="kernel")
        b = tf.Variable(tf.zeros([n_neurons]), name="bias")
        Z = tf.matmul(X, W) + b
        if activation is not None:
            return activation(Z)
        else:
            return Z


with tf.name_scope("dnn"):
    hidden1 = neuron_layer(X, n_hidden1, name="hidden1",
                           activation=tf.nn.relu)
    hidden2 = neuron_layer(hidden1, n_hidden2, name="hidden2",
                           activation=tf.nn.relu)
    logits = neuron_layer(hidden2, n_outputs, name="outputs")


#TensorFlow提供了很多函数来计算交叉熵, 我们这里会用spare_soft_max_cross_entropy_with_logits() 
with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,
                                                              logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

#有了成本函数,是时候来定义一个梯度下降优化器(GradientDescentOptimizer)了
learning_rate = 0.01

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

#通过检查最高logit值是否对应于目标类来确定神经网络的预测是否正确。这里可以使用
in_top_k()函数


with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))


init = tf.global_variables_initializer()
saver = tf.train.Saver()

####执行阶段
n_epochs = 40
batch_size = 50


def shuffle_batch(X, y, batch_size):
    rnd_idx = np.random.permutation(len(X))
    n_batches = len(X) // batch_size
    for batch_idx in np.array_split(rnd_idx, n_batches):
        X_batch, y_batch = X[batch_idx], y[batch_idx]
        yield X_batch, y_batch

####使用神经网络
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for X_batch, y_batch in shuffle_batch(X_train, y_train, batch_size):
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_batch = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_val = accuracy.eval(feed_dict={X: X_valid, y: y_valid})
        print(epoch, "Batch accuracy:", acc_batch, "Val accuracy:", acc_val)

    save_path = saver.save(sess, "./my_model_final.ckpt")

with tf.Session() as sess:
    saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path
    X_new_scaled = X_test[:20]
    Z = logits.eval(feed_dict={X: X_new_scaled})
    y_pred = np.argmax(Z, axis=1)

print("Predicted classes:", y_pred)
print("Actual classes:   ", y_test[:20])


from datetime import datetime

root_logdir = os.path.join(os.curdir, "tf_logs")

def make_log_subdir(run_id=None):
    if run_id is None:
        run_id = datetime.utcnow().strftime("%Y%m%d%H%M%S")
    return "{}/run-{}/".format(root_logdir, run_id)

def save_graph(graph=None, run_id=None):
    if graph is None:
        graph = tf.get_default_graph()
    logdir = make_log_subdir(run_id)
    file_writer = tf.summary.FileWriter(logdir, graph=graph)
    file_writer.close()
    return logdir

save_graph()

完整脚本见公共号链接

上一篇:scikit-learn笔记4 SKLearn模型选择与评估 数据集划分


下一篇:uboot FIT