全文检索方案Elasticsearch【Python-Django 服务端开发】

更详细请看 https://www.elastic.co/cn/

 

1. 全文检索和搜索引擎原理


商品搜索需求

当用户在搜索框输入商品关键字后,我们要为用户提供相关的商品搜索结果。


商品搜索实现

可以选择使用模糊查询like关键字实现。
但是 like 关键字的效率极低。
查询需要在多个字段中进行,使用 like 关键字也不方便。


全文检索方案

我们引入全文检索的方案来实现商品搜索。
全文检索即在指定的任意字段中进行检索查询。
全文检索方案需要配合搜索引擎来实现。


搜索引擎原理

搜索引擎进行全文检索时,会对数据库中的数据进行一遍预处理,单独建立起一份索引结构数据。
索引结构数据类似新华字典的索引检索页,里面包含了关键词与词条的对应关系,并记录词条的位置。
搜索引擎进行全文检索时,将关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置。

结论:

  • 搜索引擎建立索引结构数据,类似新华字典的索引检索页,全文检索时,关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置。

 

2. Elasticsearch介绍

实现全文检索的搜索引擎,首选的是Elasticsearch

  • Elasticsearch是用 Java 实现的,开源的搜索引擎。
  • 它可以快速地储存、搜索和分析海量数据。*、Stack Overflow、Github等都采用它。
  • Elasticsearch 的底层是开源库Lucene 。但是,没法直接使用 Lucene,必须自己写代码去调用它的接口。

分词说明

  • 搜索引擎在对数据构建索引时,需要进行分词处理。
  • 分词是指将一句话拆解成多个单字或词,这些字或词便是这句话的关键词。
  • 比如:我是中国人Elasticsearch 不支持对中文进行分词建立索引,需要配合扩展elasticsearch-analysis-ik来实现中文分词处理。
    • 分词后:中国等等都可以是这句话的关键字。

3. 使用Docker安装Elasticsearch

1.获取Elasticsearch-ik镜像

# 从仓库拉取镜像
$ sudo docker image pull delron/elasticsearch-ik:2.4.6-1.0

2.配置Elasticsearch-ik

  • 修改/home/python/elasticsearc-2.4.6/config/elasticsearch.yml第54行。
  • 更改ip地址为本机真实ip地址。

全文检索方案Elasticsearch【Python-Django 服务端开发】

 

 

3.使用Docker运行Elasticsearch-ik

$ sudo docker run -dti --name=elasticsearch --network=host -v /home/python/elasticsearch-2.4.6/config:/usr/share/elast

 

Haystack扩展建立索引

提示:

  • Elasticsearch的底层是开源库Lucene。但是没法直接使用 Lucene,必须自己写代码去调用它的接口。

思考:

  • 我们如何对接 Elasticsearch服务端?

解决方案:

  • Haystack

1. Haystack介绍和安装配置

1.Haystack介绍

  • Haystack 是在Django中对接搜索引擎的框架,搭建了用户和搜索引擎之间的沟通桥梁。Haystack 可以在不修改代码的情况下使用不同的搜索后端(比如ElasticsearchWhooshSolr等等)。
    • 我们在Django中可以通过使用 Haystack 来调用 Elasticsearch 搜索引擎。

2.Haystack安装

$ pip install django-haystack
$ pip install elasticsearch==2.4.1

 

3.Haystack注册应用和路由

INSTALLED_APPS = [
    'haystack', # 全文检索
]
url(r'^search/', include('haystack.urls')),

  

4.Haystack配置

  • 在配置文件中配置Haystack为搜索引擎后端
# Haystack
HAYSTACK_CONNECTIONS = {
    'default': {
        'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
        'URL': 'http://192.168.103.158:9200/', # Elasticsearch服务器ip地址,端口号固定为9200
        'INDEX_NAME': 'meiduo_mall', # Elasticsearch建立的索引库的名称
    },
}

# 当添加、修改、删除数据时,自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

  

重要提示:

  • HAYSTACK_SIGNAL_PROCESSOR配置项保证了在Django运行起来后,有新的数据产生时,Haystack仍然可以让Elasticsearch实时生成新数据的索引

 

2. Haystack建立数据索引

1.创建索引类

  • 通过创建索引类,来指明让搜索引擎对哪些字段建立索引,也就是可以通过哪些字段的关键字来检索数据。
  • 本项目中对SKU信息进行全文检索,所以在goods应用中新建search_indexes.py文件,用于存放索引类。
from haystack import indexes

from .models import SKU


class SKUIndex(indexes.SearchIndex, indexes.Indexable):
    """SKU索引数据模型类"""
    text = indexes.CharField(document=True, use_template=True)

    def get_model(self):
        """返回建立索引的模型类"""
        return SKU

    def index_queryset(self, using=None):
        """返回要建立索引的数据查询集"""
        return self.get_model().objects.filter(is_launched=True)

  

  • 索引类SKUIndex说明:
    • SKUIndex建立的字段,都可以借助HaystackElasticsearch搜索引擎查询。
    • 其中text字段我们声明为document=True,表名该字段是主要进行关键字查询的字段。
    • text字段的索引值可以由多个数据库模型类字段组成,具体由哪些模型类字段组成,我们用use_template=True表示后续通过模板来指明。

2.创建text字段索引值模板文件

  • templates目录中创建text字段使用的模板文件
  • 具体在templates/search/indexes/goods/sku_text.txt文件中定义
{{ object.id }}
{{ object.name }}
{{ object.caption }}

  

  • 模板文件说明:当将关键词通过text参数名传递时
    • 此模板指明SKU的idnamecaption作为text字段的索引值来进行关键字索引查询。

3.手动生成初始索引

$ python manage.py rebuild_index

  

3. 全文检索测试

1.准备测试表单

  • 请求方法:GET
  • 请求地址:/search/
  • 请求参数:q
<div class="search_wrap fl">
    <form method="get" action="/search/" class="search_con">
        <input type="text" class="input_text fl" name="q" placeholder="搜索商品">
        <input type="submit" class="input_btn fr" name="" value="搜索">
    </form>
    <ul class="search_suggest fl">
        <li><a href="#">索尼微单</a></li>
        <li><a href="#">优惠15元</a></li>
        <li><a href="#">美妆个护</a></li>
        <li><a href="#">买2免1</a></li>
    </ul>
</div>

  

 
上一篇:java做的一个简易的微信签到系统


下一篇:Haystack全文检索